In this study, four low molecular weight (LMW) excipients, tryptophan (TRY), phenylalanine (PHE), lysine (LYS) and saccharin (SAC) were evaluated as co-formers to generate co-amorphous systems (CAMS) by ball milling with carvedilol (CRV). Mixtures of CRV and LMW excipient in 1:0.5, 1:1 and 1:2 drug:excipient molar ratios were ball milled and analysed by powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), Fourier transform (FT-IR) infrared spectroscopy and dissolution testing.
View Article and Find Full Text PDFVarious three-dimensional printing (3DP) technologies have been investigated so far in relation to their potential to produce customizable medicines and medical devices. The aim of this study was to examine the possibility of tailoring drug release rates from immediate to prolonged release by varying the tablet thickness and the drug loading, as well as to develop artificial neural network (ANN) predictive models for atomoxetine (ATH) release rate from DLP 3D-printed tablets. Photoreactive mixtures were comprised of poly(ethylene glycol) diacrylate (PEGDA) and poly(ethylene glycol) 400 in a constant ratio of 3:1, water, photoinitiator and ATH as a model drug whose content was varied from 5% to 20% (/).
View Article and Find Full Text PDFThree-dimensional (3D) printing technologies are based on successive material printing layer-by-layer and are considered suitable for the production of dosage forms customized for a patient's needs. In this study, tablets of atomoxetine hydrochloride (ATH) have been successfully fabricated by a digital light processing (DLP) 3D printing technology. Initial materials were photoreactive suspensions, composed of poly(ethylene glycol) diacrylate 700 (PEGDA 700), poly(ethylene glycol) 400 (PEG 400), photoinitiator and suspended ATH.
View Article and Find Full Text PDFPurpose: To determine risk factors for each severity-based category of potential drug-drug interactions (DDIs) encountered at intensive care unit (ICU) patients.
Methods: This was a retrospective cohort analysis of patients treated at the ICU of the Clinical Center Kragujevac, a public tertiary care hospital in Kragujevac, Serbia. Three interaction checkers were used to reveal drug-drug interactions: Medscape, Epocrates and Micromedex.