In this Letter, we present a small series of novel bacterial topoisomerase inhibitors (NTBIs) that exhibit both potent inhibition of DNA gyrase and potent antimycobacterial activity. The disclosed crystal structure of DNA gyrase in complex with DNA and compound from this NBTI series reveals the binding mode of an NBTI in the GyrA binding pocket and confirms the presence and importance of halogen bonding for the excellent on-target potency. In addition, we have shown that compound is a promising DNA gyrase inhibitor, with an IC for gyrase of 0.
View Article and Find Full Text PDFBackground: The novel bacterial topoisomerase inhibitors (NBTIs) developed in our laboratory show potent on-target enzyme inhibition but suffer from low activity against Gram-negative bacteria.
Methods: With the aim of improving the antibacterial activity of our compounds against Gram-negative bacteria, we tested them in combination with different efflux pump inhibitors (EPIs), a strategy that showed promise in several other classes of antimicrobials. We also investigated the combined effect of NBTIs with ATP-competitive inhibitors of bacterial type II topoisomerases (ACIs), as well as the antibiofilm properties of our compounds and the combination with EPIs against early and mature biofilm.
Bacterial type II topoisomerases are well-characterized and clinically important targets for antibacterial chemotherapy. Novel bacterial topoisomerase inhibitors (NBTIs) are a newly disclosed class of antibacterials. Prediction of their binding affinity to these enzymes would be beneficial for design/optimization of new NBTIs.
View Article and Find Full Text PDFAntimicrobial resistance caused by the excessive and inappropriate use of antibacterial drugs is a global health concern. Currently, we are walking a fine line between the fact that most bacterial infections can still be cured with the antibiotics known so far, and the emergence of infections with bacteria resistant to several drugs at the same time, against which we no longer have an effective drug. Therefore, new antibacterial drugs are urgently needed to curb the hard-to-treat infections.
View Article and Find Full Text PDFNovel bacterial topoisomerase inhibitors (NBTIs) are a new class of antibacterial agents that target bacterial type II topoisomerases (DNA gyrase and topoisomerase IV). Our recently disclosed crystal structure of an NBTI ligand in complex with DNA gyrase and DNA revealed that the halogen atom in the para position of the phenyl right hand side (RHS) moiety is able to establish strong symmetrical bifurcated halogen bonds with the enzyme; these are responsible for the excellent enzyme inhibitory potency and antibacterial activity of these NBTIs. To further assess the possibility of any alternative interactions (e.
View Article and Find Full Text PDFNovel bacterial topoisomerase inhibitors (NBTIs) are new promising antimicrobials for the treatment of multidrug-resistant bacterial infections. In recent years, many new NBTIs have been discovered, however most of them struggle with the same issue - the balance between antibacterial activity and hERG-related toxicity. We started a new campaign by optimizing the previous series of NBTIs, followed by the design and synthesis of a new, amide-containing focused NBTI library to reduce hERG inhibition and maintain antibacterial activity against Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA).
View Article and Find Full Text PDFIn the framework of the rational design of macromolecules capable of binding to a specific target for biosensing applications, we here further develop an evolutionary protocol designed to optimize the binding affinity of protein binders. In particular we focus on the optimization of the binding portion of small antibody fragments known as nanobodies (or VHH) and choose the hen egg white lysozyme (HEWL) as our target. By implementing a replica exchange scheme for this optimization, we show that an initial hit is not needed and similar solutions can be found by either optimizing an already known anti-HEWL VHH or a randomly selected binder (here a VHH selective towards another macromolecule).
View Article and Find Full Text PDFNovel bacterial topoisomerase inhibitors (NBTIs) are an important new class of antibacterials targeting bacterial type II topoisomerases (DNA gyrase and topoisomerase IV). Notwithstanding their potent antibacterial activity, they suffer from a detrimental class-related hERG blockage. In this study, we designed and synthesized an optimized library of NBTIs comprising different linker moieties that exhibit reduced hERG inhibition and retain inhibitory potencies on DNA gyrase and topoisomerase IV of Staphylococcus aureus and Escherichia coli, respectively, as well as potent antibacterial activities.
View Article and Find Full Text PDFThe continued emergence of bacterial resistance has created an urgent need for new and effective antibacterial agents. Bacterial type II topoisomerases, such as DNA gyrase and topoisomerase IV (topoIV), are well-validated targets for antibacterial chemotherapy. The novel bacterial topoisomerase inhibitors (NBTIs) represent one of the new promising classes of antibacterial agents.
View Article and Find Full Text PDFComputational peptide design is useful for therapeutics, diagnostics, and vaccine development. To select the most promising peptide candidates, the key is describing accurately the peptide-target interactions at the molecular level. We here review a computational peptide design protocol whose key feature is the use of all-atom explicit solvent molecular dynamics for describing the different peptide-target complexes explored during the optimization.
View Article and Find Full Text PDFP-Glycoprotein (P-gp) is a transmembrane protein belonging to the ATP binding cassette superfamily of transporters, and it is a xenobiotic efflux pump that limits intracellular drug accumulation by pumping compounds out of cells. P-gp contributes to a reduction in toxicity, and has broad substrate specificity. It is involved in the failure of many cancer and antiviral chemotherapies due to the phenomenon of multidrug resistance (MDR), in which the membrane transporter removes chemotherapeutic drugs from target cells.
View Article and Find Full Text PDFWe designed and synthesized an optimized library of novel bacterial topoisomerase inhibitors with -halogenated phenyl right-hand side fragments and significantly enhanced and balanced dual-targeted DNA gyrase and topoisomerase IV activities of and . By increasing the electron-withdrawing properties of the -halogenated phenyl right-hand side fragment and maintaining a similar lipophilicity and size, an increased potency was achieved, indicating that the antibacterial activities of this series of novel bacterial topoisomerase inhibitors against all target enzymes are determined by halogen-bonding rather than van der Waals interactions. They show nanomolar enzyme inhibitory and whole-cell antibacterial activities against and methicillin-resistant (MRSA) strains.
View Article and Find Full Text PDFHerein, we report the design of a focused library of novel bacterial topoisomerase inhibitors (NBTIs) based on innovative mainly monocyclic right-hand side fragments active against DNA gyrase and Topo IV. They exhibit a very potent and wide range of antibacterial activity, even against some of the most concerning hard-to-treat pathogens for which new antibacterials are urgently needed, as reported by the WHO and CDC. NBTIs enzyme activity and whole cell potency seems to depend on the fine-tuned lipophilicity/hydrophilicity ratio that governs the permeability of those compounds through the bacterial membranes.
View Article and Find Full Text PDFNovel bacterial type II topoisomerase inhibitors (NBTIs) stabilize single-strand DNA cleavage breaks by DNA gyrase but their exact mechanism of action has remained hypothetical until now. We have designed a small library of NBTIs with an improved DNA gyrase-binding moiety resulting in low nanomolar inhibition and very potent antibacterial activity. They stabilize single-stranded cleavage complexes and, importantly, we have obtained the crystal structure where an NBTI binds gyrase-DNA in a single conformation lacking apparent static disorder.
View Article and Find Full Text PDFThe ABCB1 transporter also known as P-glycoprotein (P-gp) is a transmembrane protein belonging to the ATP binding cassette super-family of transporters; it is a xenobiotic efflux pump that limits intracellular drug accumulation by pumping the compounds out of cells. P-gp contributes to a decrease of toxicity and possesses broad substrate specificity. It is involved in the failure of numerous anticancer and antiviral chemotherapies due to the multidrug resistance (MDR) phenomenon, where it removes the chemotherapeutics out of the targeted cells.
View Article and Find Full Text PDFThe emergence of bacterial resistance against life-saving medicines has forced the scientific community and pharmaceutical industry to take actions in the quest for novel antibacterials. These should not only overcome the existing bacterial resistance but also provide at least interim effective protection against emerging bacterial infections. Research into DNA gyrase and topoisomerase IV inhibitors has become a particular focus, with the description of a new class of bacterial topoisomerase type II inhibitors known as "novel bacterial topoisomerase inhibitors", NBTIs.
View Article and Find Full Text PDFNovel bacterial topoisomerase inhibitors (NBTIs) are a promising class of bacterial topoisomerase II inhibitors that are gaining more and more importance mainly because of their excellent antibacterial activity, as well as their lack of cross-resistance to quinolones. Described here is the synthesis and biological evaluation of a tiny series of new virtually assembled NBTIs containing synthetically feasible right-hand side fragments capable of binding the GyrA subunit of the bacterial DNA gyrase-DNA complex. NBTI variants with incorporated 1-phenylpyrazole right-hand side moiety show suitable antibacterial activity against Gram-positive , with confirmed selectivity over the human topoisomerase IIα enzyme.
View Article and Find Full Text PDFP-glycoprotein (P-gp) is a transmembrane protein that actively transports a wide variety of chemically diverse compounds out of the cell. It is highly associated with the ADMET (absorption, distribution, metabolism, excretion and toxicity) properties of drugs/drug candidates and contributes to decreasing toxicity by eliminating compounds from cells, thereby preventing intracellular accumulation. Therefore, in the drug discovery and toxicological assessment process it is advisable to pay attention to whether a compound under development could be transported by P-gp or not.
View Article and Find Full Text PDFThe release of active pharmaceutical ingredients (APIs) into the environment is of great concern for aquatic ecosystem as many of these chemicals are designed to exert biological activity. Hence, their impact on non-target organisms like fish would not be surprising. In this respect, we revisited fish toxicity data of pharmaceuticals to generate linear and non-linear quantitative structure-toxicity relationships (QSTRs).
View Article and Find Full Text PDFBased on the previously published pyrazolopyridine-based hit compound for which negative allosteric modulation of both CXCR3 and CXCR4 receptors was disclosed, we designed, synthesized and biologically evaluated a set of novel, not only negative, but also positive allosteric modulators with preserved pyrazolopyridine core. Compound 9e is a dual negative modulator, inhibiting G protein activity of both receptors. For CXCR4 receptor para-substituted aromatic group of compounds distinguishes between negative and positive modulation.
View Article and Find Full Text PDFAlthough intercalating agents such as quinolones have had proven therapeutic success as antibacterial agents for more than 40 years, new forms of quinolone-based resistance in bacteria are continually emerging. To alleviate this problem, a new class of antibacterials is urgently needed; recently, novel bacterial topoisomerase inhibitors (NBTIs) have been found to be particularly important. Based on 67 experimentally evaluated NBTIs against wild-type (WT) DNA gyrase originating from Staphylococcus aureus, a predictive QSAR model was initially constructed and validated and was later used for in silico prediction of biological activities for an in house designed compound library of 548 novel drug-like NBTI combinatorial analogs.
View Article and Find Full Text PDFA classical protein sequence alignment and homology modeling strategy were used for building three Mycobacterium tuberculosis-DNA gyrase protein models using the available topoII-DNA-6FQ crystal structure complexes originating from different organisms. The recently determined M. tuberculosis-DNA gyrase apoprotein structures and topoII-DNA-6FQ complexes were used for defining the 6-fluoroquinolones (6-FQs) binding pockets.
View Article and Find Full Text PDFAlongside the validation, the concept of applicability domain (AD) is probably one of the most important aspects which determine the quality as well as reliability of the established quantitative structure-activity relationship (QSAR) models. To date, a variety of approaches for AD estimation have been devised which can be applied to particular type of QSAR models and their practical utilization is extensively elaborated in the literature. The present study introduces a novel, simple, and effective distance-based method for estimation of the AD in case of developed and validated predictive counter-propagation artificial neural network (CP ANN) models through a proficient exploitation of the euclidean distance (ED) metric in the structure-representation vector space.
View Article and Find Full Text PDFThe present study reports for the first time in its entirety the toxicity of 30 phenolic compounds to marine alga Dunaliella tertiolecta. Toxicity of polar narcotics and respiratory uncouplers was strongly correlated to hydrophobicity as described by the logarithm of the octanol/water partition coefficient (Log P). Compounds expected to act by more reactive mechanisms, particularly hydroquinones, were shown to have toxicity in excess of that predicted by Log P.
View Article and Find Full Text PDF