Publications by authors named "Niko Van den Brande"

Article Synopsis
  • * The study found that fluorinated groups in hydrogel formulations significantly increased stiffness compared to nonfluorinated versions, which could enhance functionality.
  • * Additionally, hydrogels containing certain fluorinated peptides showed improved stability in drug release tests, with one formulation retaining over 20% of its structure nine days after injection, as seen through imaging techniques.
View Article and Find Full Text PDF

Two dynamic covalent networks based on the Diels-Alder reaction were blended to exploit the properties of the dissimilar polymer backbones. Furan-functionalized polyether amines based on poly(propylene oxide) (PPO) FD4000 and polydimethylsiloxane (PDMS) FS5000 were mixed in a common solvent and reversibly cross-linked with the same bismaleimide DPBM. The morphology of the phase-separated blends is primarily controlled by the concentration of backbones.

View Article and Find Full Text PDF

As part of ongoing efforts to discover novel polyhydroxyalkanoate-producing bacterial species, we embarked on characterizing the thermotolerant species, Paracoccus kondratievae, for biopolymer synthesis. Using traditional chemical and thermal characterization techniques, we found that P. kondratievae accumulates poly(3-hydroxybutyrate) (PHB), reaching up to 46.

View Article and Find Full Text PDF

Organic semiconductors can afford detection at wavelengths beyond commercial silicon photodetectors. However, for each targeted near-infrared wavelength range, this requires individually optimized materials, which adds to the complexity and costs. Moreover, finding molecules with strong absorption beyond 1 μm that perform well in organic photodetectors remains a challenge.

View Article and Find Full Text PDF

The combination of different polymers in the form of blended plastics has been used in the plastic industry for a long time. Nevertheless, analyses of microplastics (MPs) have been mainly limited to the study of particles made of single-type polymers. Accordingly, two members of the Polyolefins (POs) family, i.

View Article and Find Full Text PDF
Article Synopsis
  • Peptide-based hydrogels are promising for drug delivery, particularly through subcutaneous injection, and this study focuses on a hexapeptide that shows potential for sustained release.
  • Doubling the length of the peptide to create a dodecapeptide significantly improved the hydrogel's in vivo stability and prolonged the release of drugs after injection, as shown by imaging techniques.
  • The study also found that extending the peptide sequence resulted in enhanced pain relief effects in a model test, suggesting that modifying the peptide structure can lead to longer-lasting therapeutic outcomes.
View Article and Find Full Text PDF

Diels-Alder (DA) cycloadditions in reversible polymer networks are important for designing sustainable materials with self-healing properties. In this study, the DA kinetics of hydroxyl-substituted bis- and tetrafunctional furans with bis- and tris-functional maleimides, both containing ether-functionalized spacers, is investigated by modelling two equilibria representing the and cycloadduct formation. Concretely, the potential catalysis of the DA reaction through hydrogen bonding between hydroxyl of the furans and carbonyl of the maleimides or ether of the spacers is experimentally and theoretically scrutinized.

View Article and Find Full Text PDF

Poly(ethylene terephthalate) (PET) is known for its various useful characteristics, including its applicability in cardiovascular applications, more precisely as synthetic bypass grafts for large diameter (≥ 6 mm) blood vessels. Although it is widely used, PET is not an optimal material as it is not interactive with endothelial cells, which is required for bypasses to form a complete endothelium. Therefore, in this study, poly(alkylene terephthalate)s (PATs) have been studied.

View Article and Find Full Text PDF

Two reversible polymer networks, based on Diels-Alder cycloadditions, are selected to discuss the opportunities of mobility-controlled self-healing in ambient conditions for which information is lacking in literature. The main methods for this study are (modulated temperature) differential scanning calorimetry, microcalorimetry, dynamic rheometry, dynamic mechanical analysis, and kinetic simulations. The reversible network 3M-3F630 is chosen to study the conceptual aspects of diffusion-controlled Diels-Alder reactions from 20 to 65 °C.

View Article and Find Full Text PDF

Gold nanoparticles stabilized with a thin layer of post-functionalizable calix[4]arenes were prepared through the reductive grafting of a calix[4]arene-tetra-diazonium salt. These particles show exceptional stability towards extreme pH, F(-), NaCl, and upon drying. Post-functionalization of the calix-layer was demonstrated, opening the way to a wide range of applications.

View Article and Find Full Text PDF

Optimizing the morphology of bulk heterojunctions is known to significantly improve the photovoltaic performance of organic solar cells, but available quantitative imaging techniques are few and have severe limitations. We demonstrate X-ray ptychographic coherent diffractive imaging applied to all-organic blends. Specifically, the phase-separated morphology in bulk heterojunction photoactive layers for organic solar cells, prepared from a 50:50 blend of poly(3-hexylthiophene) (P3HT) and phenyl-C61-butyric acid methyl ester (PCBM) and thermally treated for different annealing times is imaged to high resolution.

View Article and Find Full Text PDF

Conjugated polyelectrolyte (CPE) interfacial layers present a powerful way to boost the I-V characteristics of organic photovoltaics. Nevertheless, clear guidelines with respect to the structure of high-performance interlayers are still lacking. In this work, impedance spectroscopy is applied to probe the dielectric permittivity of a series of polythiophene-based CPEs.

View Article and Find Full Text PDF