Modern hydrodynamic simulations of core-collapse supernovae and neutron-star mergers require knowledge not only of the equilibrium properties of strongly interacting matter, but also of the system's response to perturbations, encoded in various transport coefficients. Using perturbative and holographic tools, we derive here an improved weak-coupling and a new strong-coupling result for the most important transport coefficient of unpaired quark matter, its bulk viscosity. These results are combined in a simple analytic pocket formula for the quantity that is rooted in perturbative quantum chromodynamics at high densities but takes into account nonperturbative holographic input at neutron-star densities, where the system is strongly coupled.
View Article and Find Full Text PDFUsing a holographic derivation of a quantum effective action for a scalar operator at strong coupling, we compute quasiequilibrium parameters relevant for the gravitational wave signal from a first-order phase transition in a simple dual model. We discuss how the parameters of the phase transition vary with the effective number of degrees of freedom of the dual field theory. Our model can produce an observable signal at LISA if the critical temperature is around a TeV, in a parameter region where the field theory has an approximate conformal symmetry.
View Article and Find Full Text PDFMotivated by the possible presence of deconfined quark matter in neutron stars and their mergers and the important role of transport phenomena in these systems, we perform the first-ever systematic study of different viscosities and conductivities of dense quark matter using the gauge/gravity duality. Using the V-QCD model, we arrive at results that are in qualitative disagreement with the predictions of perturbation theory, which highlights the differing transport properties of the system at weak and strong coupling and calls for caution in the use of the perturbative results in neutron star applications.
View Article and Find Full Text PDFWe use a top-down holographic model for strongly interacting quark matter to study the properties of neutron stars. When the corresponding equation of state (EOS) is matched with state-of-the-art results for dense nuclear matter, we consistently observe a first-order phase transition at densities between 2 and 7 times the nuclear saturation density. Solving the Tolman-Oppenheimer-Volkov equations with the resulting hybrid EOSs, we find maximal stellar masses in excess of two solar masses, albeit somewhat smaller than those obtained with simple extrapolations of the nuclear matter EOSs.
View Article and Find Full Text PDF