Publications by authors named "Niklas Niemeyer"

Adaptation transcends scale in both natural and artificial systems, but delineating the causative factors of this phenomenon requires urgent clarification. Herein, we unravel the molecular requirements for adaptation and establish a link to rationalize adaptive behavior on a self-assembled level. These concepts are established by analyzing a model compound exhibiting both light- and pH-responsive units, which enable the combined or independent application of different stimuli.

View Article and Find Full Text PDF

We present a simple and accurate GW implementation based on a combination of a Laplace transform (LT) and other acceleration techniques used in post-self-consistent field quantum chemistry, namely, natural auxiliary functions and the frozen-core approximation. The LT-GW approach combines three major benefits: (a) a small prefactor for computational scaling, (b) easy integration into existing molecular GW implementations, and (c) significant performance improvements for a wide range of possible applications. Illustrating these advantages for systems consisting of up to 352 atoms and 7412 basis functions, we further demonstrate the benefits of this approach combined with an efficient implementation of the Bethe-Salpeter equation.

View Article and Find Full Text PDF
Article Synopsis
  • This study focuses on implementing triplet excitation-energy transfer (TEET) couplings using a specific theory called subsystem-based time-dependent density-functional theory (sTDDFT).
  • It finds that while traditional sTDDFT methods work well for describing singlet energy transfer, they fall short for TEET, but a newer method called projection-based embedding (PbE) improves accuracy for these processes.
  • The research also introduces a combined approach using mixed PbE and NAKE methods to effectively explore TEET in complex environments with solvated chromophores, striking a good balance between accuracy and computational efficiency.
View Article and Find Full Text PDF

The functionalization of π-conjugated scaffolds with sterically demanding substituents is a widely used tactic to suppress cofacial (H-type) stacking interactions, which may even inhibit self-assembly. Contrary to expectations, we demonstrate herein that increasing steric effects can result in an enhanced thermodynamic stability of H-type supramolecular polymers. In our approach, we have investigated two boron dipyrromethene (BODIPY) dyes with bulky phenyl (2) and mesityl (3) meso-substituents and compared their self-assembly in nonpolar media with that of a parent meso-methyl BODIPY 1 lacking bulky groups.

View Article and Find Full Text PDF

Privileged chiral catalysts-those that share common structural features and are enantioselective across a range of reactions-continue to transform the chemical-research landscape. In recent years, new reactivity modes have been achieved through excited-state catalysis, processes activated by light, but it is unclear if the selectivity of ground-state privileged catalysts can be matched. Although the interception of photogenerated intermediates by ground-state cycles has partially addressed this challenge, single, chiral photocatalysts that simultaneously regulate reactivity and selectivity are conspicuously scarce.

View Article and Find Full Text PDF

We present a method for obtaining origin-independent electronic circular dichroism (ECD) in the length-gauge representation LG(OI) without the usage of London atomic orbitals. This approach builds upon the work by Caricato [J. Chem.

View Article and Find Full Text PDF

Range-separated hybrid functionals making use of a smooth separation of the Coulomb operator in terms of the error function and its complement have proven to be a valuable tool for improving Kohn-Sham density functional theory (DFT) calculations. This holds in particular for obtaining accurate excitation energies from linear-response time-dependent DFT. Evaluating the long-range exchange contributions represents one of the most time-consuming tasks in such calculations.

View Article and Find Full Text PDF

We investigate the suitability of subsystem time-dependent density-functional theory (sTDDFT) for describing chiroptical properties with a focus on optical rotation parameters. Our starting point is a new implementation of the recently proposed projection-based, coupled frozen-density embedding (FDEc) framework. We adapt the generalized, non-Hermitian formulation of TDDFT and derive corresponding expressions for regular and damped response properties from subsystem TDDFT.

View Article and Find Full Text PDF

We investigate the ability of projection-based embedding (PbE)/subsystem density-functional theory to describe intersubsystem charge-transfer (CT) excitations. To this end, we derive the corresponding subsystem time-dependent density-functional theory (sTDDFT) working equations including the response kernel contributions for three different popular projection operators currently in use in connection with PbE. We demonstrate that supermolecular electronic excitation spectra can be fully restored with this "exact" sTDDFT.

View Article and Find Full Text PDF