The cellular response to oxidants or xenobiotics comprises two key pathways, resulting in modulation of NRF2 and FOXO transcription factors, respectively. Both mount a cytoprotective response, and their activation relies on crucial protein thiol moieties. Using fumaric acid esters (FAEs), known thiol-reactive compounds, we tested for activation of NRF2 and FOXO pathways in cultured human hepatoma cells by dimethyl/diethyl as well as monomethyl/monoethyl fumarate.
View Article and Find Full Text PDFIn order to cope with increased demands for energy and metabolites as well as to enhance stress resilience, tumor cells develop various metabolic adaptations, representing a hallmark of cancer. In this regard, the dysregulation of sulfur metabolism that may result in elevated levels of volatile sulfur compounds (VSCs) in body fluids, breath, and/or excretions of cancer patients has recently gained attention. Besides hydrogen sulfide (HS), methanethiol is the predominant cancer-associated VSC and has been proposed as a promising biomarker for non-invasive cancer diagnosis.
View Article and Find Full Text PDFForkhead box, class O (FOXO) family proteins are widely expressed and highly conserved transcriptional regulators that modulate cellular fuel metabolism, stress resistance and cell death. FOXO target genes include genes encoding antioxidant proteins, thus likely contributing to the key role FOXOs play in the cellular response to oxidative stress and supporting the cellular strategies of antioxidant defense, that is, prevention (of the formation of reactive oxygen species), interception (of reactive species prior to their reaction with cellular components), repair (of damaged biomolecules), and adaptation (i.e.
View Article and Find Full Text PDF