The growth of phytoplankton in lakes is thought to be primarily controlled by macronutrient concentrations, but the availability of trace metal micronutrients, such as iron (Fe), are increasingly recognised as important regulators of lake primary production. This study evaluates the role of Fe in regulating phytoplankton growth in lakes of different nutrient status in New Zealand. The results of this unique year-long study, combining highly sensitive trace metal concentration analysis of waters and particulates with advanced trace metal bioavailability and speciation modelling, constrains thresholds for bioavailable Fe and colloidal Fe of 0.
View Article and Find Full Text PDFDissolved organic matter (DOM) release from Cd contaminated soils been linked to mobilisation of the metal as Cd-DOM complexes and this may be exacerbated by organic matter-rich soil amendments. The quantity and quality of the DOM can determine the proportion of dissolved Cd that partitions to mobile complexes and their stability and, thus, the potential for Cd transport from contaminated soils. The aim of this work was to examine differences in Cd mobilisation from soils to which different types of soil amendments/conditioners have been applied and the importance of DOM characteristics in determining the extent to which this can happen.
View Article and Find Full Text PDFGrowing worldwide concern over uranium contamination of groundwater resources has placed an emphasis on understanding uranium transport dynamics and potential toxicity in groundwater-surface water systems. In this study, we utilized novel in-situ sampling methods to establish the location and magnitude of contaminated groundwater entry into a receiving surface water environment, and to investigate the speciation and potential bioavailability of uranium in groundwater and surface water. Streambed temperature mapping successfully identified the location of groundwater entry to the Little Wind River, downgradient from the former Riverton uranium mill site, Wyoming, USA.
View Article and Find Full Text PDFThe relative ease with which cadmium (Cd) in agricultural soils can transfer to crop plants can pose a potential health risk to consumers. However, efforts to predict and mitigate these risks are often confounded by the various factors that influence metal accumulation in the edible plant parts. The aim of this work was to identify key drivers that determine Cd concentrations in spinach leaves, potato tubers, onion bulbs and wheat grain grown in commercial horticultural operations across New Zealand (NZ).
View Article and Find Full Text PDFIodine (I) is an essential trace element commonly deficient in agricultural systems. Whereas there is much information on I in food crops, there is a lacuna of knowledge on the environmental factors that affect pasture I concentrations. We aimed to identify the most important environmental factors affecting the concentration of I in New Zealand pastures, and the consequences to agricultural systems.
View Article and Find Full Text PDFWheat ( L.) grain is a contributing source of dietary Cd in New Zealand, but despite this, there is a dearth of information on Cd concentrations in wheat and the factors that affect uptake. We measured Cd concentrations in 12 wheat cultivars grown in field sites across New Zealand and also assessed the soil, plant, and crop factors that have been reported to affect Cd uptake.
View Article and Find Full Text PDFThe buffering of phosphorus concentrations in soil solution by the soil-solid phase is an important process for providing plant root access to nutrients. Accordingly, the size of labile solid phase-bound phosphorus pool and the rate at which it can resupply phosphorous into the dissolved phase can be important variables in determining when the plant availability of the nutrient may be limited. The phosphorus labile pool (P) and its desorption kinetics were simultaneously evaluated in 10 agricultural UK soils using the diffusive gradients in thin-films (DGT) technique.
View Article and Find Full Text PDFRoot foraging may increase plant nutrient acquisition at the cost of reducing the total volume of soil explored, thereby reducing the chance of the roots encountering additional patches. Patches in soil seldom contain just one nutrient: the patch may also have distinct textural, hydrological, and toxicological characteristics. We sought to determine the characteristics of root foraging by a pioneering species, , using pot trials and rhizobox experiments with patches of biosolids.
View Article and Find Full Text PDFGallium (Ga) and indium (In) are increasingly susceptible to soil contamination via disposal of electronic equipment. Chemically similar to aluminium (Al), these elements may be mobile and bioavailable under acidic conditions. We sought to determine extent and nature of Ga and In mobility in the soil - plant system and thus their potential to enter the food chain.
View Article and Find Full Text PDFThe accumulation of Cd in soils worldwide has increased the demand for methods to reduce the metal's plant bioavailability. Organic matter rich soil amendments have been shown to be effective in achieving this. However, it is not known how long these amendments can retain the Cd, and whether dissolved organic matter (DOM) released from them can enhance the metal's mobility in the environment.
View Article and Find Full Text PDFDeposition of particulate organic matter (POM) induces diagenetic hot spots at the sediment-water interface (SWI). Here we explore the effects of intensive POM degradation for metal mobilization at the SWI. By using a combined planar optode-DGT (diffusive gradient in thin-films) sensor we obtained simultaneous measurements of dissolved O and trace metal dynamics around an aggregate of reactive organic matter placed on the SWI of a sediment mesocosm.
View Article and Find Full Text PDFRepeated applications of Cd-rich phosphate fertilizers have resulted in elevated concentrations of this toxic element in some New Zealand soils. Exceedance of the food safety standard for Cd (0.1 mg kg fresh weight) has been reported for potato ( L.
View Article and Find Full Text PDFIn wetland-adapted plants, such as rice, it is typically root apexes, sites of rapid entry for water/nutrients, where radial oxygen losses (ROLs) are highest. Nutrient/toxic metal uptake therefore largely occurs through oxidized zones and pH microgradients. However, the processes controlling the acquisition of trace elements in rice have been difficult to explore experimentally because of a lack of techniques for simultaneously measuring labile trace elements and O2/pH.
View Article and Find Full Text PDFA numerical model of the transport and dynamics of metal complexes in the resin and gel layers of a DGT (diffusive gradients in thin films) device was developed and used to investigate how the chelating resin and metal-ligand complexes in solution affect metal uptake. Decreasing the stability constant or concentration of the binding resin increases the competition for free metal ions by ligands in solution, lowering the rate of mass uptake. Such effects would be rarely observed for moderately or strongly binding resins (K> 10(12)), including Chelex, which out-compete labile ligands in solution.
View Article and Find Full Text PDFSampling of metals with the technique of diffusive gradients in thin-films (DGT) depends on the rates of diffusion and on the kinetics of interconversion of the species present. In this study the discrimination between metal complexes with different dissociation kinetics is investigated. Samplers with differentthicknesses of diffusive and resin gels were deployed in solutions containing 10 microg/L of each metal in the lanthanide (Ln) series (except Pm) and 2.
View Article and Find Full Text PDF