Publications by authors named "Niklas Heine"

Fructose metabolism by ketohexokinase (KHK) is implicated in a variety of metabolic disorders. KHK inhibition is a potential therapeutic strategy for the treatment of diseases including diabetes, non-alcoholic fatty liver disease, and non-alcoholic steatohepatitis. The first small-molecule KHK-inhibitors have entered clinical trials, but it remains unclear if systemic inhibition of KHK by small-molecules will eventually benefit patients.

View Article and Find Full Text PDF

A molecular understanding of the proteins involved in fructose metabolism is essential for controlling the current spread of fructose-related obesity, diabetes and related adverse metabolic states in Western populations. Fructose catabolism starts with the phosphorylation of D-fructose to fructose 1-phosphate by ketohexokinase (KHK). KHK exists in two alternatively spliced isoforms: the hepatic and intestinal isoform KHK-C and the peripheral isoform KHK-A.

View Article and Find Full Text PDF

OX1 receptor antagonists are of interest to treat, for example, substance abuse disorders, personality disorders, eating disorders, or anxiety-related disorders. However, known dual OX1/OX2 receptor antagonists are not suitable due to their sleep-inducing effects; therefore, we were interested in identifying a highly OX1 selective antagonist with a sufficient window to OX2-mediated effects. Herein, we describe the design of highly selective OX1 receptor antagonists driven by the X-ray structure of OX1 with suvorexant, a dual OX1/OX2 receptor antagonist.

View Article and Find Full Text PDF

The identification and optimization of a novel series of centrally efficacious gamma secretase modulators (GSMs) offering an alternative to the privileged aryl imidazole motif is described. Chiral bicyclic tetrahydroindazolyl amine substituted triazolopyridines were identified as structurally distinct novel series of GSMs. Representative compound BI-1408 ((R)-42) was demonstrated to be centrally efficacious in rats at a 30 mg/kg oral dose.

View Article and Find Full Text PDF

A method for facile difluoromethylation of various thiols using (difluoromethyl)triphenylphosphonium bromide under mild reaction conditions is presented. The transformation proceeds in the absence of any transition metal using a bench-stable and readily accessible phosphonium salt. Deuterium labeling experiments and cyclic voltammetry measurements reveal that the difluoromethylation occurs via a S1-type mechanism.

View Article and Find Full Text PDF

In this work, the synthesis of various halogenated thiophenol derivatives is presented. These thiophenols are used as monomers in light-initiated SRN 1-type radical polymerization reactions. The method provides easy access to industrially relevant poly(paraphenylene sulfide) and poly(metaphenylene sulfide).

View Article and Find Full Text PDF

We have evaluated a range of functionalized isocyanides in the aziridine aldehyde-driven multicomponent synthesis of piperazinones. High diasteroselectivity for each isocyanide was observed. A theoretical evaluation of the reaction course corroborates the experimental data.

View Article and Find Full Text PDF

Making light work of RAFT conjugation: a non-activated RAFT agent at the end of RAFT polymers can readily be coupled with ortho-quinodimethanes (photoenols) in a photo-triggered Diels-Alder reaction under mild conditions without catalyst. The method is universal and opens the door for the conjugation of a large number of RAFT-prepared polymers with photoenol-functionalized (macro)molecules. (RAFT=reversible addition-fragmentation chain transfer.

View Article and Find Full Text PDF

Solution-phase combinatorial synthesis of (2S,4S)-4-acylamino-5-oxopyrrolidine-2-carboxamides was studied. First, di-tert-butyl (2S,4S)-4-amino-5-oxopyrrolidine-1,2-dicarboxylate hydrochloride was prepared as the key intermediate in five steps from (S)-pyroglutamic acid. Acylation of the amino group followed by acidolytic deprotection gave (2S,4S)-4-acylamino-5-oxopyrrolidine-2-carboxylic acids, which were then coupled with amines to furnish a library of (2S,4S)-4-acylamino-5-oxopyrrolidine-2-carboxamides.

View Article and Find Full Text PDF