Ammonia is crucial as a fertilizer and in the chemical industry and is considered to be a carbon-free fuel. Ammonia electrosynthesis from nitrogen under ambient conditions offers an attractive alternative to the Haber-Bosch process, and lithium-mediated nitrogen reduction represents a promising approach to continuous-flow ammonia electrosynthesis, coupling nitrogen reduction with hydrogen oxidation. However, tetrahydrofuran, which is commonly used as a solvent, impedes long-term ammonia production owing to polymerization and volatility problems.
View Article and Find Full Text PDFAmmonia is a crucial component in the production of fertilizers and various nitrogen-based compounds. Now, the lithium-mediated nitrogen reduction reaction (Li-NRR) has emerged as a promising approach for ammonia synthesis at ambient conditions. The proton shuttle plays a critical role in the proton transfer process during Li-NRR.
View Article and Find Full Text PDFAmmonia (NH) is a key commodity chemical for the agricultural, textile and pharmaceutical industries, but its production via the Haber-Bosch process is carbon-intensive and centralized. Alternatively, an electrochemical method could enable decentralized, ambient NH production that can be paired with renewable energy. The first verified electrochemical method for NH synthesis was a process mediated by lithium (Li) in organic electrolytes.
View Article and Find Full Text PDFThe lithium-mediated nitrogen reduction reaction (Li-NRR) is a promising method for decentralized ammonia synthesis using renewable energy. An organic electrolyte is utilized to combat the competing hydrogen evolution reaction, and lithium is plated to activate the inert N molecule. Ethanol is commonly used as a proton shuttle to provide hydrogen to the activated nitrogen.
View Article and Find Full Text PDF