Publications by authors named "Niklas Freund"

Synthetic biology seeks to probe fundamental aspects of biological form and function by construction [i.e., (re)synthesis] rather than deconstruction (analysis).

View Article and Find Full Text PDF

Functional nucleic acids can be evolved using cycles of selection and amplification, starting from diverse-sequence libraries, which are typically restricted to natural or partially-modified polymer chemistries. Here, we describe the efficient DNA-templated synthesis and reverse transcription of libraries entirely composed of serum nuclease resistant alternative nucleic acid chemistries validated in nucleic acid therapeutics; locked nucleic acid (LNA), 2'--methyl-RNA (2'OMe-RNA), or mixtures of the two. We evaluate yield and diversity of synthesised libraries and measure the aggregate error rate of a selection cycle.

View Article and Find Full Text PDF

Steric exclusion is a key element of enzyme substrate specificity, including in polymerases. Such substrate specificity restricts the enzymatic synthesis of 2'-modified nucleic acids, which are of interest in nucleic-acid-based drug development. Here we describe the discovery of a two-residue, nascent-strand, steric control 'gate' in an archaeal DNA polymerase.

View Article and Find Full Text PDF

Beyond the natural nucleic acids DNA and RNA, nucleic acid chemistry has unlocked a whole universe of modifications to their canonical chemical structure, which can in various ways modify and enhance nucleic acid function and utility for applications in biotechnology and medicine. Unlike the natural modifications of tRNA and rRNA or the epigenetic modifications in mRNA and genomic DNA, these altered chemistries are not found in nature and therefore these molecules are referred to as xeno-nucleic acids (XNAs). In this review we aim to focus specifically on recent progress in a subsection of this vast field-synthetic genetics-concerned with encoded synthesis, reverse transcription, and evolution of XNAs.

View Article and Find Full Text PDF

The Large Particle 3D Concrete Printing (LP3DCP) process presented in this paper is based on the particle bed 3D printing method; here, the integration of significantly larger particles (up to 36 mm) for selective binding using the shotcrete technique is presented. In the LP3DCP process, the integration of large particles, i.e.

View Article and Find Full Text PDF

Recently, the progress in 3D concrete printing has developed enormously. However, for the techniques available, there is still a severe lack of knowledge of the functional interaction of processing technology, concrete rheology and admixture usage. For shotcrete 3D printing technology, we present the effect of accelerator dosages (0%, 2%, 4% and 6%) on fresh concrete properties and on interlayer strength.

View Article and Find Full Text PDF