Hospital-associated methicillin-resistant (MRSA) strains typically express high-level, homogeneous (HoR) β-lactam resistance, whereas community-associated MRSA (CA-MRSA) more commonly express low-level heterogeneous (HeR) resistance. Expression of the HoR phenotype typically requires both increased expression of the gene, carried on the staphylococcal cassette chromosome element (SCC), and additional mutational event(s) elsewhere on the chromosome. Here the oxacillin concentration in a chemostat culture of the CA-MRSA strain USA300 was increased from 8 μg/ml to 130 μg/ml over 13 days to isolate highly oxacillin-resistant derivatives.
View Article and Find Full Text PDFInnovative approaches to the use of existing antibiotics is an important strategy in efforts to address the escalating antimicrobial resistance crisis. We report a new approach to the treatment of methicillin-resistant Staphylococcus aureus (MRSA) infections by demonstrating that oxacillin can be used to significantly attenuate the virulence of MRSA despite the pathogen being resistant to this drug. Using mechanistic in vitro assays and in vivo models of invasive pneumonia and sepsis, we show that oxacillin-treated MRSA strains are significantly attenuated in virulence.
View Article and Find Full Text PDFLarge-scale recombination events have led to the emergence of epidemic clones of several major bacterial pathogens. However, the functional impact of the recombination on clonal success is not understood. Here, we identified a novel widespread hybrid clone (ST71) of livestock-associated that evolved from an ancestor belonging to the major bovine lineage CC97, through multiple large-scale recombination events with other lineages occupying the same ruminant niche.
View Article and Find Full Text PDFFront Cell Infect Microbiol
September 2015
Antibiotic resistance and biofilm-forming capacity contribute to the success of Staphylococcus aureus as a human pathogen in both healthcare and community settings. These virulence factors do not function independently of each other and the biofilm phenotype expressed by clinical isolates of S. aureus is influenced by acquisition of the methicillin resistance gene mecA.
View Article and Find Full Text PDF