The catalytic relevance of Fe(IV) species in non-heme iron catalysis has motivated synthetic advances in well-defined five- and six-coordinate Fe(IV) complexes for a better understanding of their fundamental electronic structures and reactivities. Herein, we report the syntheses of FeDipp and FeMes, a pair of unusual four-coordinate non-heme formally Fe(IV) complexes with S=1 ground states supported by strongly donating bisamide ligands. By combining spectroscopic characterization and computational modeling, we found that small variations in ligand aryl substituents resulted in substantial changes in both structures and bonding.
View Article and Find Full Text PDFA series of four lanthanide thenoyltrifluoroacetone (TTA) complexes consisting of two f (La and Ce) and two f (Ce) complexes was examined using steady-state and time-resolved spectroscopic techniques. The wide range of spectroscopic techniques presented herein have enabled us to discern the nature of the excited states (charge transfer, CT vs ligand localized, LL) as well as construct a Jablonski diagram for detailing the excited state reactivity within the series of molecules. The wavelength and excitation power dependence for these series of complexes are the first direct verification for the presence of simultaneous competing, noninteracting CT and LL excited states.
View Article and Find Full Text PDFIron-catalyzed amino-oxygenation of olefins often uses discrete ligands to increase reactivity and broaden substrate scope. This work is focused on examining ligand effects on reactivity and in situ iron speciation in a system which utilizes a bisoxazoline ligand. Freeze-trapped Fe Mössbauer and EPR spectroscopies as well as SC-XRD experiments were utilized to isolate and identify the species formed during the catalytic reaction of amino-oxygenation of olefins with functionalized hydroxylamines, as well as in the precatalytic mixture of iron salt and ligand.
View Article and Find Full Text PDFThe first uranium bis(acyl)phosphide (BAP) complexes were synthesized from the reaction between sodium bis(mesitoyl)phosphide () or sodium bis(2,4,6-triisopropylbenzoyl)phosphide () and UI(1,4-dioxane). Thermally stable, homoleptic BAP complexes were characterized by single-crystal X-ray diffraction and electron paramagnetic resonance (EPR) spectroscopy, when appropriate, for the elucidation of the electronic structure and bonding of these complexes. EPR spectroscopy revealed that the BAP ligands on the uranium center retain a significant amount of electron density.
View Article and Find Full Text PDFControlling the properties of heavy element complexes, such as those containing berkelium, is challenging because relativistic effects, spin-orbit and ligand-field splitting, and complex metal-ligand bonding, all dictate the final electronic states of the molecules. While the first two of these are currently beyond experimental control, covalent M‒L interactions could theoretically be boosted through the employment of chelators with large polarizabilities that substantially shift the electron density in the molecules. This theory is tested by ligating Bk with 4'-(4-nitrophenyl)-2,2':6',2"-terpyridine (terpy*), a ligand with a large dipole.
View Article and Find Full Text PDFThe high abundance, low toxicity and rich redox chemistry of iron has resulted in a surge of iron-catalyzed organic transformations over the last two decades. Within this area, N-heterocyclic carbene (NHC) ligands have been widely utilized to achieve high yields across reactions including cross-coupling and C-H alkylation, amongst others. Central to the development of iron-NHC catalytic methods is the understanding of iron speciation and the propensity of these species to undergo reduction events, as low-valent iron species can be advantageous or undesirable from one system to the next.
View Article and Find Full Text PDFAs prevalent cofactors in living organisms, iron-sulfur clusters participate in not only the electron-transfer processes but also the biosynthesis of other cofactors. Many synthetic iron-sulfur clusters have been used in model studies, aiming to mimic their biological functions and to gain mechanistic insight into the related biological systems. The smallest [2Fe-2S] clusters are typically used for one-electron processes because of their limited capacity.
View Article and Find Full Text PDFC-term magnetic circular dichroism (MCD) spectroscopy is a powerful method for probing d-d and f-f transitions in paramagnetic metal complexes. However, this technique remains underdeveloped both experimentally and theoretically for studies of U(v) complexes of Oh symmetry, which have been of longstanding interest for probing electronic structure, bonding, and covalency in 5f systems. In this study, C-term NIR MCD of the Laporte forbidden f-f transitions of [UCl6]- and [UF6]- are reported, demonstrating the significant fine structure resolution possible with this technique including for the low energy Γ7 → Γ8 transitions in [UF6]-.
View Article and Find Full Text PDFMagnetic circular dichroism (MCD) spectroscopy is a powerful experiment used to probe the electronic structure and bonding in paramagnetic metal-based complexes. While C-term MCD spectroscopy has been utilized in many areas of chemistry, it has been underutilized in studying paramagnetic organometallic transition metal and f-element complexes. From the analysis of isolated organometallic complexes to the study of in situ generated species, MCD can provide information regarding ligand interactions, oxidation and spin state, and geometry and coordination environment of paramagnetic species.
View Article and Find Full Text PDFThe trivalent oxidation state of uranium has been shown to undergo unique reactivity, from its ability to activate a variety of small molecules to its role in the catalytic reduction of ethene to ethane amongst others. Central to this unique reactivity and ability to rationally design ligands for isotope separation is the underlying uranium electronic structure. While electronic structure studies of U(iv), U(v), and U(vi) have been extensive, by comparison, analogous studies of more reduced oxidation states such as U(iii) remains underdeveloped.
View Article and Find Full Text PDFThe synthesis and characterization of sterically unencumbered homoleptic organouranium aryl complexes containing U-C σ-bonds has been of interest to the chemical community for over 70 years. Reported herein are the first structurally characterized, sterically unencumbered homoleptic uranium (IV) aryl-ate species of the form [U(Ar) ] (Ar=Ph, p-tolyl, p-Cl-Ph). Magnetic circular dichroism (MCD) spectroscopy and computational studies provide insight into electronic structure and bonding interactions in the U-C σ-bond across this series of complexes.
View Article and Find Full Text PDFSince the pioneering work of Kochi in the 1970s, iron has attracted great interest for cross-coupling catalysis due to its low cost and toxicity as well as its potential for novel reactivity compared to analogous reactions with precious metals like palladium. Today there are numerous iron-based cross-coupling methodologies available, including challenging alkyl-alkyl and enantioselective methods. Furthermore, cross-couplings with simple ferric salts and additives like NMP and TMEDA ( N-methylpyrrolidone and tetramethylethylenediamine) continue to attract interest in pharmaceutical applications.
View Article and Find Full Text PDF