The Grainy head-like 3 (Grhl3) gene encodes a transcription factor that plays essential roles in epidermal morphogenesis during embryonic development, with deficient mice exhibiting failed skin barrier formation, defective wound repair, and loss of eyelid fusion. Despite sharing significant sequence homology, overlapping expression patterns, and an identical core consensus DNA binding site, the other members of the Grhl family (Grhl1 and -2) fail to compensate for the loss of Grhl3 in these processes. Here, we have employed diverse genetic models, coupled with biochemical studies, to define the inter-relationships of the Grhl factors in epidermal development.
View Article and Find Full Text PDFPrimary neurulation in mammals has been defined by distinct anatomical closure sites, at the hindbrain/cervical spine (closure 1), forebrain/midbrain boundary (closure 2), and rostral end of the forebrain (closure 3). Zones of neurulation have also been characterized by morphologic differences in neural fold elevation, with non-neural ectoderm-induced formation of paired dorso-lateral hinge points (DLHP) essential for neural tube closure in the cranial and lower spinal cord regions, and notochord-induced bending at the median hinge point (MHP) sufficient for closure in the upper spinal region. Here we identify a unifying molecular basis for these observations based on the function of the non-neural ectoderm-specific Grainy head-like genes in mice.
View Article and Find Full Text PDFThe ems/Emx genes encode homeodomain transcription factors that have conserved actions in anterior embryonic patterning in bilaterian animals ranging from insects to mammals. Recently, genes of the ems/Emx family have been identified in cnidarians raising the possibility that some of their developmental functions might be conserved throughout the Eumetazoa. To determine to what extent functions of a cnidarian ems/Emx protein have been retained across phyla, we carried out cross-phylum rescue expression experiments in which the coral Acropora emx-Am gene was misexpressed in Drosophila ems mutants.
View Article and Find Full Text PDFIn addition to its role in formation of the epidermal barrier, the mammalian transcription factor Grainy head-like 3 (Grhl3) is also essential for neural tube closure and wound repair, processes that are dependent in part on epidermal migration. Here, we demonstrate that the LIM-only domain protein, LMO4 serves as a functional partner of GRHL3 in its established roles, and define a new cooperative role for these factors in another developmental epidermal migration event, eyelid fusion. GRHL3 and LMO4 interact biochemically and genetically, with mutant mice exhibiting fully penetrant exencephaly, thoraco-lumbo-sacral spina bifida, defective skin barrier formation, and a co-incident eyes-open-at-birth (EOB) phenotype, which is not observed in the original individual null lines.
View Article and Find Full Text PDFIn Drosophila, the grainy head (grh) gene plays a range of key developmental roles through the regulation of members of the cadherin gene family. We now report that mice lacking the grh homologue grainy head-like 1 (Grhl1) exhibit hair and skin phenotypes consistent with a reduction in expression of the genes encoding the desmosomal cadherin, desmoglein 1 (Dsg1). Grhl1-null mice show an initial delay in coat growth, and older mice exhibit hair loss as a result of poor anchoring of the hair shaft in the follicle.
View Article and Find Full Text PDFCnidarians are animals with a single (oral/aboral) overt body axis and with origins that nominally predate bilaterality. To better understand the evolution of axial patterning mechanisms, we characterized genes from the coral, Acropora millepora (Class Anthozoa) that are considered to be unambiguous markers of the bilaterian anterior/posterior and dorsal/ventral axes. Homologs of Otx/otd and Emx/ems, definitive anterior markers across the Bilateria, are expressed at opposite ends of the Acropora larva; otxA-Am initially around the blastopore and later preferentially toward the oral end in the ectoderm, and emx-Am predominantly in putative neurons in the aboral half of the planula larva, in a domain overlapping that of cnox-2Am, a Gsh/ind gene.
View Article and Find Full Text PDFThe Drosophila cuticle is essential for maintaining the surface barrier defenses of the fly. Integral to cuticle resilience is the transcription factor grainy head, which regulates production of the enzyme required for covalent cross-linking of the cuticular structural components. We report that formation and maintenance of the epidermal barrier in mice are dependent on a mammalian homolog of grainy head, Grainy head-like 3.
View Article and Find Full Text PDFA number of examples of independently duplicated regulatory genes have been identified in cnidarians, but the extent of this phenomenon and organization of these duplicated genes are unknown. Here we describe the identification of three pairs of independently duplicated homeobox genes in the anthozoan cnidarian, Acropora millepora. In each case, the pairs of paralogous genes are tightly linked, but the extent of sequence divergence implies that these do not reflect recent duplication events.
View Article and Find Full Text PDFThe complete nucleotide sequence of the mitochondrial genome of the coral Acropora tenuis has been determined. The 18,338 bp A. tenuis mitochondrial genome contains the standard metazoan complement of 13 protein-coding and two rRNA genes, but only the same two tRNA genes (trnM and trnW) as are present in the mtDNA of the sea anemone, Metridium senile.
View Article and Find Full Text PDFThe phylum Cnidaria is the closest outgroup to the triploblastic metazoans and as such offers unique insights into evolutionary questions at several levels. In the post-genomic era, a knowledge of the gene complement of representative cnidarians will be important for understanding the relationship between the expansion of gene families and the evolution of morphological complexity among more highly evolved metazoans. Studies of cnidarian development and its molecular control will provide information about the origins of the major bilaterian body axes, the origin of the third tissue layer, the mesoderm, and the evolution of nervous system patterning.
View Article and Find Full Text PDF