Therapeutic proteins alleviate disease pathology by supplementing missing or defective native proteins, sequestering superfluous proteins, or by acting through designed non-natural mechanisms. Although therapeutic proteins often have the same amino acid sequence as their native counterpart, their maturation paths from expression to the site of physiological activity are inherently different, and optimizing protein sequences for properties that 100s of millions of years of evolution did not need to address presents an opportunity to develop better biological treatments. Because therapeutic proteins are inherently non-natural entities, optimization for their desired function should be considered analogous to that of small molecule drug candidates, which are optimized through expansive combinatorial variation by the medicinal chemist.
View Article and Find Full Text PDFGiven the expanding number of complex therapeutic protein drugs and advanced therapy medicinal products that are being developed, improving our ability to assess the potential immunogenicity of biologics is critical to ensuring treatment efficacy and patient safety. In this context, the European Immunogenicity Platform annual meeting provides opportunities for experts from industry and academia, regulators and clinicians to convene and discuss immunogenicity assessment methods and tools. This report summarizes the key messages on immunogenicity testing, prediction, clinical relevance and advanced therapy medicinal products discussed at the 11th Open Scientific European Immunogenicity Platform Symposium on Immunogenicity of Biopharmaceuticals, Lisbon, Portugal, 17-19 February 2020.
View Article and Find Full Text PDFUnlabelled: Sulfolobus turreted icosahedral virus (STIV), an archaeal virus that infects the hyperthermoacidophile Sulfolobus solfataricus, is one of the most well-studied viruses of the domain Archaea. STIV shares structural, morphological, and sequence similarities with viruses from other domains of life, all of which are thought to belong to the same viral lineage. Several of these common features include a conserved coat protein fold, an internal lipid membrane, and a DNA-packaging ATPase.
View Article and Find Full Text PDFLignin is a complex aromatic polymer found in plant cell walls that makes up 15 to 40% of plant biomass. The degradation of lignin substructures by bacteria is of emerging interest because it could provide renewable alternative feedstocks and intermediates for chemical manufacturing industries. We have isolated a bacterium, strain SG61-1L, that rapidly degrades all of the stereoisomers of one lignin substructure, guaiacylglycerol-β-guaiacyl ether (GGE), which contains a key β-O-4 linkage found in most intermonomer linkages in lignin.
View Article and Find Full Text PDFThe Archaea-and their viruses-remain the most enigmatic of life's three domains. Once thought to inhabit only extreme environments, archaea are now known to inhabit diverse environments. Even though the first archaeal virus was described over 40 years ago, only 117 archaeal viruses have been discovered to date.
View Article and Find Full Text PDFEukarya, Archaea, and some Bacteria encode all or part of the essential mevalonate (MVA) metabolic pathway clinically modulated using statins. Curiously, two components of the MVA pathway are often absent from archaeal genomes. The search for these missing elements led to the discovery of isopentenyl phosphate kinase (IPK), one of two activities necessary to furnish the universal five-carbon isoprenoid building block, isopentenyl diphosphate (IPP).
View Article and Find Full Text PDFViruses that infect the third domain of life, Archaea, are a newly emerging field of interest. To date, all characterized archaeal viruses infect archaea that thrive in extreme conditions, such as halophilic, hyperthermophilic, and methanogenic environments. Viruses in general, especially those replicating in extreme environments, contain highly mosaic genomes with open reading frames (ORFs) whose sequences are often dissimilar to all other known ORFs.
View Article and Find Full Text PDFUnnatural amino acids (Uaas) can be translationally incorporated into proteins in vivo using evolved tRNA/aminoacyl-tRNA synthetase (RS) pairs, affording chemistries inaccessible when restricted to the 20 natural amino acids. To date, most evolved RSs aminoacylate Uaas chemically similar to the native substrate of the wild-type RS; these conservative changes limit the scope of Uaa applications. Here, we adapt Methanosarcina mazei PylRS to charge a noticeably disparate Uaa, O-methyl-l-tyrosine (Ome).
View Article and Find Full Text PDFThe biosynthesis of isopentenyl diphosphate (IPP) from either the mevalonate (MVA) or the 1-deoxy-d-xylulose 5-phosphate (DXP) pathway provides the key metabolite for primary and secondary isoprenoid biosynthesis. Isoprenoid metabolism plays crucial roles in membrane stability, steroid biosynthesis, vitamin production, protein localization, defense and communication, photoprotection, sugar transport, and glycoprotein biosynthesis. Recently, an alternative branch of the MVA pathway was discovered in the archaeon Methanocaldococcus jannaschii involving a small molecule kinase, isopentenyl phosphate kinase (IPK).
View Article and Find Full Text PDFWe report the structures and stereochemistry of seven bisabolyl-derived sesquiterpenes arising from an unprecedented 1,6-cyclization (cisoid pathway) efficiently catalyzed by tobacco 5-epi-aristolochene synthase (TEAS). The use of (2Z,6E)-farnesyl diphosphate as an alternate substrate for recombinant TEAS resulted in a robust enzymatic cyclization to an array of products derived exclusively (>/=99.5%) from the cisoid pathway, whereas these same products account for ca.
View Article and Find Full Text PDFSesquiterpene skeletal complexity in nature originates from the enzyme-catalyzed ionization of (trans,trans)-farnesyl diphosphate (FPP) (1a) and subsequent cyclization along either 2,3-transoid or 2,3-cisoid farnesyl cation pathways. Tobacco 5-epi-aristolochene synthase (TEAS), a transoid synthase, produces cisoid products as a component of its minor product spectrum. To investigate the cryptic cisoid cyclization pathway in TEAS, we employed (cis,trans)-FPP (1b) as an alternative substrate.
View Article and Find Full Text PDFThroughout molecular evolution, organisms create assorted chemicals in response to varying ecological niches. Catalytic landscapes underlie metabolic evolution, wherein mutational steps alter the biosynthetic properties of enzymes. Here we report the first systematic quantitative characterization of the catalytic landscape underlying the evolution of sesquiterpene chemical diversity.
View Article and Find Full Text PDF