Publications by authors named "Nikita Shlapakov"

This review explores the pivotal role of sulfur in advancing sustainable carbon-carbon (C-C) coupling reactions. The unique electronic properties of sulfur, as a soft Lewis base with significant mesomeric effect make it an excellent candidate for initiating radical transformations, directing C-H-activation, and facilitating cycloaddition and C-S bond dissociation reactions. These attributes are crucial for developing waste-free methodologies in green chemistry.

View Article and Find Full Text PDF

In modern organic chemistry, harnessing the power of multicomponent radical reactions presents both significant challenges and extraordinary potential. This article delves into this scientific frontier by addressing the critical issue of controlling selectivity in such complex processes. We introduce a novel approach that revolves around the reversible addition of thiyl radicals to multiple bonds, reshaping the landscape of multicomponent radical reactions.

View Article and Find Full Text PDF

Cross-coupling reactions are among the most important transformations in modern organic synthesis. Although the range of reported (het)aryl halides and nucleophile coupling partners is very large considering various protocols, the reaction conditions vary considerably between compound classes, necessitating renewed case-by-case optimization of the reaction conditions. Here we introduce adaptive dynamic homogeneous catalysis (AD-HoC) with nickel under visible-light-driven redox reaction conditions for general C(sp)-(hetero)atom coupling reactions.

View Article and Find Full Text PDF

The first example of an intermolecular thiol-yne-ene coupling reaction is reported for the one-pot construction of C-S and C-C bonds. Thiol-yne-ene coupling opens a new dimension in building molecular complexity to access densely functionalized products. The employment of Eosin Y/DBU/MeOH photocatalytic system suppresses hydrogen atom transfer (HAT) and associative reductant upconversion (via C-S three-electron σ-bond formation).

View Article and Find Full Text PDF

An associative electron upconversion is proposed as a key step determining the selectivity of thiol-yne coupling. The developed synthetic approach provided an efficient tool to access a comprehensive range of products - four types of vinyl sulfides were prepared in high yields and selectivity. We report practically important transition-metal-free regioselective thiol-yne addition and formation of the demanding Markovnikov-type product by a radical photoredox process.

View Article and Find Full Text PDF

Photoexcited electron-hole pairs on a semiconductor surface can engage in redox reactions with two different substrates. Similar to conventional electrosynthesis, the primary redox intermediates afford only separate oxidized and reduced products or, more rarely, combine to one addition product. Here, we report that a stable organic semiconductor material, mesoporous graphitic carbon nitride (mpg-CN), can act as a visible-light photoredox catalyst to orchestrate oxidative and reductive interfacial electron transfers to two different substrates in a two- or three-component system for direct twofold carbon-hydrogen functionalization of arenes and heteroarenes.

View Article and Find Full Text PDF

The carbon-sulfur bond formation reaction is of paramount importance for functionalized materials design, as well as for biochemical applications. The use of expensive metal-based catalysts and the consequent contamination with trace metal impurities are challenging drawbacks of the existing methodologies. Here, we describe the first environmentally friendly metal-free photoredox pathway to the thiol-yne click reaction.

View Article and Find Full Text PDF