One of the hallmarks of Alzheimer's disease (AD) pathogenesis is the production, aggregation, and deposition of amyloid-β (Aβ) peptide. Surface-enhanced Raman spectroscopy (SERS) is a promising analytical technique capable of providing valuable information on chemical composition and molecule conformations in biological samples. However, one of the main challenges for introducing the SERS technique into the practice is preparation of scalable and at the same time stable nanostructured sensors with uniform spatial distribution of nanoparticles.
View Article and Find Full Text PDFThe recent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has posed a great challenge for the development of ultra-fast methods for virus identification based on sensor principles. We created a structure modeling surface and size of the SARS-CoV-2 virus and used it in comparison with the standard antigen SARS-CoV-2-the receptor-binding domain (RBD) of the S-protein of the envelope of the SARS-CoV-2 virus from the Wuhan strain-for the development of detection of coronaviruses using a DNA-modified, surface-enhanced Raman scattering (SERS)-based aptasensor in sandwich mode: a primary aptamer attached to the plasmonic surface-RBD-covered Ag nanoparticle-the Cy3-labeled secondary aptamer. Fabricated novel hybrid plasmonic structures based on "Ag mirror-SiO-nanostructured Ag" demonstrate sensitivity for the detection of investigated analytes due to the combination of localized surface plasmons in nanostructured silver surface and the gap surface plasmons in a thin dielectric layer of SiO between silver layers.
View Article and Find Full Text PDFA unique approach based on Molecular Immobilization and Resonant Raman Amplification by Complex-Loaded Enhancers (MIRRACLE) on copper (II)-chitosan-modified SERS-active metallic nanostructured substrates is proposed for sensitive and rapid determination of the catecholamines (CA) dopamine, norepinephrine, and epinephrine. The ternary (CA)Cu(4AAP) complexes were characterized by the appearance of new absorbance bands at 555, 600, and 500 nm for dopamine, norepinephrine, and epinephrine, respectively. The new absorbance band matched with a broad surface plasmon resonance band of utilized silver nanoparticles: 450-600 nm, and 633 excitation wavelength.
View Article and Find Full Text PDF