Angew Chem Int Ed Engl
September 2024
New approaches for the integration of chemical and physical stimuli to control the dynamics of artificial enzymatic reaction networks (ERNs) are needed. Here, we present a general approach to convert a light stimulus into a time-programmed pH response. We developed and characterized a panel of photoswitchable inhibitors of urease.
View Article and Find Full Text PDFThe intricate and complex features of enzymatic reaction networks (ERNs) play a key role in the emergence and sustenance of life. Constructing such networks enables stepwise build up in complexity and introduces the opportunity to control enzymatic activity using physicochemical stimuli. Rational design and modulation of network motifs enable the engineering of artificial systems with emergent functionalities.
View Article and Find Full Text PDFPerylenylethynyl derivatives have been recognized as broad-spectrum antivirals that target the lipid envelope of enveloped viruses. In this study, we present novel perylenylethynylphenols that exhibit nanomolar or submicromolar antiviral activity against Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) and feline infectious peritonitis virus (FIPV) in vitro. Perylenylethynylphenols incorporate into viral and cellular membranes and block the entry of the virus into the host cell.
View Article and Find Full Text PDFLiving systems use enzymatic reaction networks to process biochemical information and make decisions in response to external or internal stimuli. Herein, we present a modular and reusable platform for molecular information processing using enzymes immobilised in hydrogel beads and compartmentalised in a continuous stirred tank reactor. We demonstrate how this setup allows us to perform simple arithmetic operations, such as addition, subtraction and multiplication, using various concentrations of substrates or inhibitors as inputs and the production of a fluorescent molecule as the readout.
View Article and Find Full Text PDFAn aptamer is a synthetic oligonucleotide with a unique spatial structure that provides specific binding to a target. To date, several aptamers to hemagglutinin of the influenza A virus have been described, which vary in affinity and strain specificity. Among them, the DNA aptamer RHA0385 is able to recognize influenza hemagglutinins with highly variable sequences.
View Article and Find Full Text PDFHighly sensitive and rapid technology of surface enhanced Raman scattering (SERS) was applied to create aptasensors for influenza virus detection. SERS achieves 106-109 times signal amplification, yielding excellent sensitivity, whereas aptamers to hemagglutinin provide a specific recognition of the influenza virus. Aptamer RHA0385 was demonstrated to have essentially broad strain-specificity toward both recombinant hemagglutinins and the whole viruses.
View Article and Find Full Text PDFTwo novel conjugates of detonation nanodiamonds (dNDs) with the proteolytic enzymes chymotrypsin and papain were synthesized. The synthesis was performed via functionalization of the dNDs' surface with acidic/alkali treatment followed by carbodiimide-mediated protein binding. Covalent binding of the enzymes was confirmed by Fourier transform infrared spectrographic analysis and high-performance liquid chromatography (HPLC) amino acid analysis.
View Article and Find Full Text PDF