Publications by authors named "Nikita K Kulachenkov"

Laser conversion of metal-organic frameworks (MOFs) has recently emerged as a fast and low-energy consumptive approach to create scalable MOF derivatives for catalysis, energy, and optics. However, due to the virtually unlimited MOF structures and tunable laser parameters, the results of their interaction are unpredictable and poorly controlled. Here, we experimentally base a general approach to create nano- to centimeter-scale MOF derivatives with the desired nonlinear optical and catalytic properties.

View Article and Find Full Text PDF

We report on the design of 1D MOFs based on a nopinane-annelated organic ligand and Co(II) or Ni(II), the variation of which allows tuning the optical modulation bandwidth. Structural and time-resolved analysis revealed the optical modulation mechanism, the rates and its endurance, thereby enriching the list of sustainable MOFs for tunable optical modulators.

View Article and Find Full Text PDF

Active controlling of optical properties of metallic particles holds great promise for nonlinear nanophotonics and compact optoelectronic devices. Except for the electronic and chemical tuning of their properties, active control through fast and reversible shape modulation remains a significant challenge. Here, we report on the concept for changing the color and brightness of single particles by reversible/irreversible tuning of their shapes.

View Article and Find Full Text PDF

Polymers with embedded metal-organic frameworks (MOFs) have been of interest in research for advanced applications in gas separation, catalysis and sensing due to their high porosity and chemical selectivity. In this study, we utilize specific MOFs with high thermal stability and non-centrosymmetric crystal structures (zeolitic imidazolate framework, ZIF-8) in order to give an example of MOF-polymer composite applications in nonlinear optics. The synthesized MOF-based polymethyl methacrylate (PMMA) composite (ZIF-8-PMMA) demonstrates the possibility of the visualization of near-infrared laser beams in the research lab.

View Article and Find Full Text PDF

We demonstrate herein an all-optical switch based on stimuli-responsive and photochromic-free metal-organic framework (HKUST-1). Ultrafast near-infrared laser pulses stimulate a reversible 0.4 eV blue shift of the absorption band with up to 200 s rate due to dehydration and concomitant shrinking of the structure-forming [Cu C O ] cages of HKUST-1.

View Article and Find Full Text PDF