Purpose: To develop a reproducible in vitro model simulating central venous catheter (CVC) exchange with high potential for air embolization and test the hypothesis that a closed catheter clamp over hydrophilic guide wire exchange technique will significantly reduce the volume of air introduced during CVC exchange.
Materials And Methods: The model consisted of a 16-F valved sheath, 240-mL container, and pressure transducer submerged in water in a 1,200-mL suction canister system. Continuous wall suction was applied to the canister to maintain negative pressure at -7 mm Hg or -11 mm Hg.
Background: Hereditary hemorrhagic telangiectasia (HHT) is a vascular disorder characterized by arteriovenous malformations and blood vessel enlargements. However, there are no effective drug therapies to combat arteriovenous malformation formation in patients with HHT. Here, we aimed to address whether elevated levels of ANG2 (angiopoietin-2) in the endothelium is a conserved feature in mouse models of the 3 major forms of HHT that could be neutralized to treat brain arteriovenous malformations and associated vascular defects.
View Article and Find Full Text PDF