RNA molecules are increasingly being identified as facilitating or impeding the interaction of proteins and nucleic acids, serving as so-called scaffolds or decoys. Long non-coding RNAs have been commonly implicated in such roles, particularly in the regulation of nuclear processes including chromosome topology, regulation of chromatin state and gene transcription, and assembly of nuclear biomolecular condensates such as paraspeckles. Recently, an increased awareness of cytoplasmic RNA scaffolds and decoys has begun to emerge, including the identification of non-coding regions of mRNAs that can also function in a scaffold-like manner to regulate interactions of nascently translated proteins.
View Article and Find Full Text PDFStress granules (SGs) are hypothesized to facilitate TAR DNA-binding protein 43 (TDP-43) cytoplasmic mislocalization and aggregation, which may underly amyotrophic lateral sclerosis pathology. However, much data for this hypothesis is indirect. Additionally, whether P-bodies (PBs; related mRNA-protein granules) affect TDP-43 phenotypes is unclear.
View Article and Find Full Text PDFP-bodies (PBs) are cytoplasmic mRNA-protein (mRNP) granules conserved throughout eukaryotes which are implicated in the repression, storage and degradation of mRNAs. PB assembly is driven by proteins with self-interacting and low-complexity domains. Non-translating mRNA also stimulates PB assembly, however no studies to date have explored whether particular mRNA transcripts are more critical than others in facilitating PB assembly.
View Article and Find Full Text PDFAmyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease characterized by cytoplasmic protein aggregates within motor neurons. These aggregates are linked to ALS pathogenesis. Recent evidence has suggested that stress granules may aid the formation of ALS protein aggregates.
View Article and Find Full Text PDF