Publications by authors named "Nikita Arnst"

Article Synopsis
  • - Membrane contact sites (MCSs) help organelles coordinate activities, but their small size and dynamic nature make them hard to study with traditional imaging methods.
  • - Researchers developed chemogenetic reporters that enhance the imaging of MCSs in both lab and living systems, enabling the exploration of complex biological questions.
  • - They introduced a new biosensor, PRINCESS, which can detect MCSs and measure calcium dynamics simultaneously, revealing a mechanism where calcium signaling affects the positioning of the endoplasmic reticulum and mitochondria.
View Article and Find Full Text PDF

Alzheimer's disease (AD) is a hereditary and sporadic neurodegenerative illness defined by the gradual and cumulative loss of neurons in specific brain areas. The processes that cause AD are still under investigation and there are no available therapies to halt it. Current progress puts at the forefront the "calcium (Ca) hypothesis" as a key AD pathogenic pathway, impacting neuronal, astrocyte and microglial function.

View Article and Find Full Text PDF

The brain synaptic circuitry is formed as a result of pre-defined genetic programs and sensory experience during postnatal development. Perineuronal nets ensheath synaptic boutons and control several crucial features of the synapse physiology. Formation of the perineuronal net microstructure during the brain development remains largely unstudied.

View Article and Find Full Text PDF

For some time, it has been accepted that the β-site APP cleaving enzyme 1 (BACE1) and the γ-secretase are two main players in the amyloidogenic processing of the β-amyloid precursor protein (APP). Recently, the membrane-type 5 matrix metalloproteinase (MT5-MMP/MMP-24), mainly expressed in the nervous system, has been highlighted as a new key player in APP-processing, able to stimulate amyloidogenesis and also to generate a neurotoxic APP derivative. In addition, the loss of MT5-MMP has been demonstrated to abrogate pathological hallmarks in a mouse model of Alzheimer's disease (AD), thus shedding light on MT5-MMP as an attractive new therapeutic target.

View Article and Find Full Text PDF

Perineuronal net (PNN) is a highly structured portion of the CNS extracellular matrix (ECM) regulating synaptic plasticity and a range of pathologic conditions including posttraumatic regeneration and epilepsy. Here we studied Wisteria floribunda agglutinin-stained histological sections to quantify the PNN size and enrichment of chondroitin sulfates in mouse brain and spinal cord. Somatosensory cortex sections were examined during the period of PNN establishment at postnatal days 14, 21 and 28.

View Article and Find Full Text PDF

Perineuronal nets (PNN) ensheath GABAergic and glutamatergic synapses on neuronal cell surface in the central nervous system (CNS), have neuroprotective effect in animal models of Alzheimer disease and regulate synaptic plasticity during development and regeneration. Crucial insights were obtained recently concerning molecular composition and physiological importance of PNN but the microstructure of the network remains largely unstudied. Here we used histochemistry, fluorescent microscopy and quantitative image analysis to study the PNN structure in adult mouse and rat neurons from layers IV and VI of the somatosensory cortex.

View Article and Find Full Text PDF