Blooming and pruning is one of the most important developmental mechanisms of the biological brain in the first years of life, enabling it to adapt its network structure to the demands of the environment. The mechanism is thought to be fundamental for the development of cognitive skills. Inspired by this, Chialvo and Bak proposed in 1999 a learning scheme that learns from mistakes by eliminating from the initial surplus of synaptic connections those that lead to an undesirable outcome.
View Article and Find Full Text PDFMLP-Mixer based on multilayer perceptrons (MLPs) is a novel architecture of a neuromorphic computing system (NCS) introduced for image classification tasks without convolutional layers. Its software realization demonstrates high classification accuracy, although the number of trainable weights is relatively low. One more promising way of improving the NCS performance, especially in terms of power consumption, is its hardware realization using memristors.
View Article and Find Full Text PDFConvolutional neural networks (CNNs) have been widely used in image recognition and processing tasks. Memristor-based CNNs accumulate the advantages of emerging memristive devices, such as nanometer critical dimensions, low power consumption, and functional similarity to biological synapses. Most studies on memristor-based CNNs use either software models of memristors for simulation analysis or full hardware CNN realization.
View Article and Find Full Text PDFThis work is aimed to study experimental and theoretical approaches for searching effective local training rules for unsupervised pattern recognition by high-performance memristor-based Spiking Neural Networks (SNNs). First, the possibility of weight change using Spike-Timing-Dependent Plasticity (STDP) is demonstrated with a pair of hardware analog neurons connected through a (CoFeB)(LiNbO) nanocomposite memristor. Next, the learning convergence to a solution of binary clusterization task is analyzed in a wide range of memristive STDP parameters for a single-layer fully connected feedforward SNN.
View Article and Find Full Text PDFNeuromorphic systems consisting of artificial neurons and memristive synapses could provide a much better performance and a significantly more energy-efficient approach to the implementation of different types of neural network algorithms than traditional hardware with the Von-Neumann architecture. However, the memristive weight adjustment in the formal neuromorphic networks by the standard back-propagation techniques suffers from poor device-to-device reproducibility. One of the most promising approaches to overcome this problem is to use local learning rules for spiking neuromorphic architectures which potentially could be adaptive to the variability issue mentioned above.
View Article and Find Full Text PDFIn this paper, the resistive switching and neuromorphic behaviour of memristive devices based on parylene, a polymer both low-cost and safe for the human body, is comprehensively studied. The Metal/Parylene/ITO sandwich structures were prepared by means of the standard gas phase surface polymerization method with different top active metal electrodes (Ag, Al, Cu or Ti of ~500 nm thickness). These organic memristive devices exhibit excellent performance: low switching voltage (down to 1 V), large OFF/ON resistance ratio (up to 10), retention (≥10 s) and high multilevel resistance switching (at least 16 stable resistive states in the case of Cu electrodes).
View Article and Find Full Text PDF