Publications by authors named "Nikiphoros Vlastos"

Functionalizing graphene with exact pore size, specific functional groups, and precision doping poses many significant challenges. Current methods lack precision and produce random pore sizes, sites of attachment, and amounts of dopant, leading to compromised structural integrity and affecting graphene's applications. In this work, we report a strategy for the synthesis of functionalized graphitic materials with modifiable nanometer-sized pores via a Pictet-Spengler polymerization reaction.

View Article and Find Full Text PDF

Despite the importance of modeling lattice thermal conductivity in predicting thermoelectric (TE) properties, computational data on heat transport, especially from first-principles, in 2D metal-organic frameworks (MOFs) remain limited due to the high computational cost. To address this, we provide a benchmark of the performance of semiempirical self-consistent-charge density functional tight-binding (SCC-DFTB) methods against density functional theory (DFT) for monolayer, serrated, AA-stacked and/or AB-stacked ZnCO, CdCO, Zn-NH-MOF, and Ni(HITP) MOFs. Harmonic lattice dynamics calculations, including partial atomic contributions to phonon dispersions, are evaluated with both SCC-DFTB and DFT, whereas anharmonic transport (i.

View Article and Find Full Text PDF

Recent studies have shown that metal-organic frameworks (MOFs) have potential as thermoelectric materials, and the topic has received increasing attention. The main motivation for this project is to further our knowledge of thermoelectric properties in MOFs and find which available self-consistent-charge density functional tight binding (SCC-DFTB) method can best predict (at least trends in) the electronic properties of MOFs at a lower computational cost than standard density functional theory (DFT). In this work, the electronic properties of monolayer, serrated, AA-stacked, and/or AB-stacked ZnCO, CdCO, Zn-NH-MOF─for which no previous calculations of thermoelectric performance exist─and Ni(HITP) MOFs are modeled with DFT-PBE, DFT-HSE06, GFN1-xTB, GFN2-xTB, and DFTB-3ob/mio.

View Article and Find Full Text PDF