Publications by authors named "Nikil Purushotham"

There are a limited number of effective vaccines against dengue virus (DENV) and significant efforts are being made to develop potent anti-virals. Previously, we described that platelet-chemokine CXCL4 negatively regulates interferon (IFN)-α/β synthesis and promotes DENV2 replication. An antagonist to CXCR3 (CXCL4 receptor) reversed it and inhibited viral replication.

View Article and Find Full Text PDF

Owing to its presence in several biological processes, Sirt1 acts as a potential therapeutic target for many diseases. Here, we report the structure-based designing and synthesis of two distinct series of novel Sirt1 inhibitors, benzimidazole mono-peptides and amino-acid derived 5-pyrazolyl methylidene rhodanine carboxylic acid. The compounds were evaluated for enzyme-based and cell-based Sirt1 inhibition assay, and cytotoxic-activity in both liver and breast cancer cells.

View Article and Find Full Text PDF

2-Amino-5-(3-fluoro-4-methoxyphenyl)thiophene-3-carbonitrile have been synthesized from 1-(3-fluoro-4-methoxyphenyl)ethanone, malononitrile, a mild base and sulfur powder using Gewald synthesis technique and the intermediate was treated with 1,3-disubstituted pyrazole-4-carboxaldehyde to obtain the novel Schiff bases. 1,3-disubstituted pyrazole-4-carboxaldehyde derivatives have been synthesized by Vilsmeier-Haack reaction in the course of a multi-step reaction. The structure of novel compounds were established on the basis of their elemental analyses IR, H NMR, C NMR, and mass spectral data and then screened for their antimicrobial activity.

View Article and Find Full Text PDF

Aim: To investigate a novel series of quinazoline monopeptide esters for the in vitro antibacterial activity.

Methodology/results: The compounds were synthesized via one-pot Dimroth rearrangement of suitable formamidine intermediates with 3-aminobenzoic acid, followed by coupling the resulting acids with amino acid esters and screening for their antibacterial activity by broth dilution method. The compounds 5a, 5b, 5c, 5g, 5i and 5j showed promising activity against the Gram-positive bacteria, 5c and 5g being the most potent against Enterococcus faecalis and Staphylococcus aureus, respectively, with a minimal inhibitory concentration of 0.

View Article and Find Full Text PDF