The incorporation of sensitive bioactive substances such as proteins or DNA into nanofibers poses a significant problem due to the toxicity of most organic solvents. The main idea of this study is to use alternating current electrospraying to create a suspension consisting of polyvinyl alcohol (PVA) capsules containing a bioactive substance dispersed in a solvent system suitable for a water-insoluble biocompatible polymer. In this suspension consisting of PVA capsules and a chloroform/ethanol mixture, poly (ε-caprolactone) (PCL) was dissolved and spun by needle-free electrospinning.
View Article and Find Full Text PDFTraditional wound dressings have not been able to satisfy the needs of the regenerative medicine biomedical area. With the aim of improving tissue regeneration, nanofiber-based wound dressings fabricated by electrospinning (ES) processes have emerged as a powerful approach. Nowadays, nanofiber-based bioactive dressings are mainly developed with a combination of natural and synthetic polymers, such as polycaprolactone (PCL) and chitosan (CHI).
View Article and Find Full Text PDFActive wound dressings are attracting extensive attention in soft tissue repair and regeneration, including bacteria-infected skin wound healing. As the wide use of antibiotics leads to drug resistance we present here a new concept of wound dressings based on the polycaprolactone nanofiber scaffold (NANO) releasing second generation lipophosphonoxin (LPPO) as antibacterial agent. Firstly, we demonstrated in vitro that LPPO released from NANO exerted antibacterial activity while not impairing proliferation/differentiation of fibroblasts and keratinocytes.
View Article and Find Full Text PDFWe have prepared a candidate biocompatible construct for skin wound healing based on electrospun polycaprolactone (PCL) nanofibrous membranes. The membrane material was loaded either with L-arginine or with alaptide, or with a mixture of both bioactive components. Alaptide is a spirocyclic synthetic dipeptide, an analogue of melanocyte-stimulating hormone release-inhibiting factor.
View Article and Find Full Text PDF