Background: This study assessed whether electromagnetic navigation can be of added value during resection of recurrent or post-therapy intra-abdominal/pelvic soft tissue sarcomas (STS) in challenging locations.
Materials And Methods: Patients were included in a prospective navigation study. A pre-operatively 3D roadmap was made and tracked using electromagnetic reference markers.
Purpose: The surgical navigation system that provides guidance throughout the surgery can facilitate safer and more radical liver resections, but such a system should also be able to handle organ motion. This work investigates the accuracy of intraoperative surgical guidance during open liver resection, with a semi-rigid organ approximation and electromagnetic tracking of the target area.
Methods: The suggested navigation technique incorporates a preoperative 3D liver model based on diagnostic 4D MRI scan, intraoperative contrast-enhanced CBCT imaging and electromagnetic (EM) tracking of the liver surface, as well as surgical instruments, by means of six degrees-of-freedom micro-EM sensors.
Importance: The percentage of tumor-positive surgical resection margin rates in patients treated for locally advanced primary or recurrent rectal cancer is high. Image-guided navigation may improve complete resection rates.
Objective: To ascertain whether image-guided navigation during rectal cancer resection improves complete resection rates compared with surgical procedures without navigation.
In the past decades, image-guided surgery has evolved rapidly. In procedures with a relatively fixed target area, like neurosurgery and orthopedics, this has led to improved patient outcomes. In cancer surgery, intraoperative guidance could be of great benefit to secure radical resection margins since residual disease is associated with local recurrence and poor survival.
View Article and Find Full Text PDFAccurate assessment of 3D models of patient-specific anatomy of the liver, including underlying hepatic and biliary tree, is critical for preparation and safe execution of complex liver resections, especially due to high variability of biliary and hepatic artery anatomies. Dynamic MRI with hepatospecific contrast agents is currently the only type of diagnostic imaging that provides all anatomical information required for generation of such a model, yet there is no information in the literature on how the complete 3D model can be generated automatically. In this work, a new automated segmentation workflow for extraction of patient-specific 3D model of the liver, hepatovascular and biliary anatomy from a single multiphase MRI acquisition is developed and quantitatively evaluated.
View Article and Find Full Text PDFPurpose: Diffuse large B-cell lymphoma (DLBCL) represents the most common subtype of non-Hodgkin lymphoma. Most relapses occur in the first 2 years after diagnosis. Early response assessment with F-fluoro-2-deoxy-D-glucose (F-FDG) positron emission tomography (PET) may facilitate early change of treatment, thereby preventing ineffective treatment and unnecessary side effects.
View Article and Find Full Text PDF(-)-OSU6162 is a dopamine stabilizer that can counteract both hyperdopaminergic and hypodopaminergic states. In this study, D2/D3 receptor occupancy of (-)-OSU6162 in the human brain was investigated using positron emission tomography (PET). Twelve male healthy volunteers underwent [(11)C]raclopride PET scanning before and 1 h after a single oral dose of (-)-OSU6162 (15-90 mg).
View Article and Find Full Text PDFSubclinical systemic microvascular dysfunction exists in asymptomatic patients with type 1 diabetes. We hypothesized that microangiopathy, resulting from long-standing systemic hyperglycemia and hyperinsulinemia, may be generalized to the brain, resulting in changes in cerebral blood flow (CBF) and metabolism in these patients. We performed dynamic [(15)O]H2O and [(18)F]-fluoro-2-deoxy-d-glucose brain positron emission tomography scans to measure CBF and cerebral glucose metabolism (CMRglu), respectively, in 30 type 1 diabetic patients and 12 age-matched healthy controls after an overnight fast.
View Article and Find Full Text PDFBackground: Positron emission tomography (PET) allows for the measurement of cerebral blood flow (CBF; based on [15O]H2O) and cerebral metabolic rate of glucose utilization (CMRglu; based on [18 F]-2-fluoro-2-deoxy-d-glucose ([18 F]FDG)). By using kinetic modeling, quantitative CBF and CMRglu values can be obtained. However, hardware limitations led to the development of semiquantitive calculation schemes which are still widely used.
View Article and Find Full Text PDFJNJ-37822681 is a novel, fast-dissociating dopamine D(2) receptor antagonist, currently in development as an antipsychotic drug candidate. A previous first-in-human study demonstrated mild central nervous system effects of JNJ-37822681 in healthy male volunteers. Significant but transient serum prolactin elevations were demonstrated, whereas other neurophysiological effects were relatively small.
View Article and Find Full Text PDFA major pathological hallmark of Alzheimer's disease is accumulation of amyloid-β in senile plaques in the brain. Evidence is accumulating that decreased clearance of amyloid-β from the brain may lead to these elevated amyloid-β levels. One of the clearance pathways of amyloid-β is transport across the blood-brain barrier via efflux transporters.
View Article and Find Full Text PDFPurpose: Imaging with positron emission tomography (PET) using (18)F-2-fluoro-2-deoxy-D: -glucose (FDG) plays an increasingly important role for response assessment in oncology. Several methods for quantifying FDG PET results exist. The goal of this study was to analyse and compare various semi-quantitative measures for response assessment with full kinetic analysis, specifically in assessment of novel therapies.
View Article and Find Full Text PDFEur J Nucl Med Mol Imaging
August 2010
Purpose: Quantitative accuracy of positron emission tomography (PET) is affected by partial volume effects resulting in increased underestimation of the standardized uptake value (SUV) with decreasing tumour volume. The purpose of the present study was to assess accuracy and precision of different partial volume correction (PVC) methods.
Methods: Three methods for PVC were evaluated: (1) inclusion of the point spread function (PSF) within the reconstruction, (2) iterative deconvolution of PET images and (3) calculation of spill-in and spill-out factors based on tumour masks.