The mTOR pathway is a conserved master regulator of translational activity that influences the fate of industrially relevant CHO cell cultures, yet its molecular mechanisms remain unclear. Interestingly, rapamycin specific inhibition of the mTOR pathway in CHO cells was found to down-regulate the small nucleolar RNA U19 (snoRNA U19) by 2-fold via translatome profiling. snoRNA U19 guides the two most conserved pseudouridylation modifications on 28S ribosomal RNA (rRNA) that are important for the biogenesis and proper function of ribosomes.
View Article and Find Full Text PDFThe mammalian target of rapamycin (mTOR) pathway plays essential roles in the regulation of translational activity in many eukaryotes. Thus, from a bioprocessing point of view, understanding its molecular mechanisms may provide potential avenues for improving cell culture performance. Toward this end, the mTOR pathway of CHO cells in batch cultures was subjected to rapamycin treatment (inhibition) or nutrient supplementation (induction) and translational activities of CHO cells producing a monoclonal antibody (mAb) were evaluated with polysome profiling technology.
View Article and Find Full Text PDFWe report the first investigation of translational efficiency on a global scale, also known as translatome, of a Chinese hamster ovary (CHO) DG44 cell line producing monoclonal antibodies (mAb). The translatome data was generated via combined use of high resolution and streamlined polysome profiling technology and proprietary Nimblegen microarrays probing for more than 13K annotated CHO-specific genes. The distribution of ribosome loading during the exponential growth phase revealed the translational activity corresponding to the maximal growth rate, thus allowing us to identify stably and highly translated genes encoding heterogeneous nuclear ribonucleoproteins (Hnrnpc and Hnrnpa2b1), protein regulator of cytokinesis 1 (Prc1), glucose-6-phosphate dehydrogenase (G6pdh), UTP6 small subunit processome (Utp6) and RuvB-like protein 1 (Ruvbl1) as potential key players for cellular growth.
View Article and Find Full Text PDFThe increasing demand for recombinant therapeutic proteins highlights the need to constantly improve the efficiency and yield of these biopharmaceutical products from mammalian cells, which is fully achievable only through proper understanding of cellular functioning. Towards this end, the current study exploited a combined metabolomics and in silico modeling approach to gain a deeper insight into the cellular mechanisms of Chinese hamster ovary (CHO) fed-batch cultures. Initially, extracellular and intracellular metabolite profiling analysis shortlisted key metabolites associated with cell growth limitation within the energy, glutathione, and glycerophospholipid pathways that have distinct changes at the exponential-stationary transition phase of the cultures.
View Article and Find Full Text PDFThe biopharmaceutical industry has been in pursuit of strategies which can isolate stable and high-producing cell lines. The whole cell mass spectrometry method by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) is a rapid and simple method for cell characterization based on the differences in the fingerprints of the mass spectra. This work describes how the method was evaluated for the application of screening for stable and high-producing clones from a panel of recombinant Chinese hamster ovary (CHO) cell lines.
View Article and Find Full Text PDFA liquid chromatography-mass spectrometry (LC-MS) based metabolomics platform was previously established to identify and profile extracellular metabolites in culture media of mammalian cells. This presented an opportunity to isolate novel apoptosis-inducing metabolites accumulating in the media of antibody-producing Chinese hamster ovary (CHO mAb) fed-batch bioreactor cultures. Media from triplicate cultures were collected daily for the metabolomics analysis.
View Article and Find Full Text PDFOne of the goals of recombinant glycoprotein production is to achieve consistent glycosylation. Although many studies have examined the changes in the glycosylation quality of recombinant protein with culture, very little has been done to examine the underlying changes in glycosylation gene expression as a culture progresses. In this study, the expression of 24 genes involved in N-glycosylation were examined using quantitative RT PCR to gain a better understanding of recombinant glycoprotein glycosylation during production processes.
View Article and Find Full Text PDFControlling glycosylation of recombinant proteins produced by CHO cells is highly desired as it can be directed towards maintaining or increasing product quality. To further our understanding of the different factors influencing glycosylation, a glycosylation sub-array of 79 genes and a capillary electrophoresis method which simultaneously analyzes 12 nucleotides and 7 nucleotide sugars; were used to generate intracellular N-glycosylation profiles. Specifically, the effects of nucleotide sugar precursor feeding on intracellular glycosylation activities were analyzed in CHO cells producing recombinant human interferon-gamma (IFN-gamma).
View Article and Find Full Text PDFOver the past 20 years, we have seen significant improvements in product titres from 50 mg/l to 5-10 g/l, a more than 100-fold increase. The main methods that have been employed to achieve this increase in product titre have been through the manipulation of culture media and process control strategies, such as the optimization of fed-batch processes. An alternative means to increase productivity has been through the engineering of host cells by altering cellular processes.
View Article and Find Full Text PDFAn intact-cell mass spectrometry (ICM) method using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) was evaluated for the screening of stable recombinant Chinese hamster ovary (CHO) cell lines, an important mammalian cell line in bioprocessing. With rapid and simple cell pretreatments, viabilities of cells could be rapidly distinguished on the different fingerprints of mass spectra. Detectable m/z values on cell surfaces and their relative intensities were processed by two biostatistical methods, principle components analysis (PCA) and partial least squares (PLS), with promising results.
View Article and Find Full Text PDFWe have established a liquid chromatography-mass spectrometry based metabolomics platform to identify extracellular metabolites in the medium of recombinant Chinese hamster ovary (CHO) fed-batch reactor cultures. Amongst the extracellular metabolites identified, malate accumulation was the most significant. The contributing factors to malate efflux were found to be the supply of aspartate from the medium, and an enzymatic bottleneck at malate dehydrogenase II (MDH II) in the tricarboxylic acid cycle.
View Article and Find Full Text PDFA metabolomics-based approach was used to time profile extracellular metabolites in duplicate fed-batch bioreactor cultures of recombinant Chinese Hamster Ovary (CHO) cells producing monoclonal IgG antibody. Culture medium was collected and analysed using a high-performance liquid chromatography (HPLC) system in tandem with an LTQ-Orbitrap mass spectrometer. An in-house software was developed to pre-process the LC/MS data in terms of filtering and peak detection.
View Article and Find Full Text PDFGenerating stable, high-producing cell lines for recombinant protein production requires an understanding of the potential limitations in the cellular machinery for protein expression. In order to increase our understanding of what makes a stable high producer, we have generated a panel of 17 recombinant monoclonal antibody expressing Chinese hamster ovary subclones (CHO-mAb) with specific productivities ranging between 3 and 75 pg cell(-1) day(-1) using the dihydrofolate reductase (dhfr) expression system and compared the molecular features of these high- and low-producer clones. The relative heavy chain (HC) and light chain (LC) transgene copy numbers and mRNA levels were determined using real-time quantitative PCR (RT qPCR).
View Article and Find Full Text PDFGlycosylation engineering strategies that are currently used to improve quality of recombinant glycoproteins involve the manipulation of glycosyltransferase and/or glycosidase expression. We explored the possibility that over expressing nucleotide sugar transporters, particularly the CMP-sialic acid transporter (CMP-SAT) would improve the sialylation process in Chinese hamster ovary cells (CHO). Our hypothesis was that increasing CMP-SAT in the cells through recombinant means would increase the transport of CMP-sialic acid into the Golgi, resulting in an increased CMP-sialic acid intra-lumenal pool and increased sialylation of the proteins produced.
View Article and Find Full Text PDF