Liquid-liquid phase separation is a rich and dynamic process, which recently has gained new interest, especially in biology and for material synthesis. In this work, we experimentally show that co-flow of a nonequilibrated aqueous two-phase system within a planar flow-focusing microfluidic device results in a three-dimensional flow, as the two nonequilibrated solutions move downstream along the length of the microchannel. After the system reaches steady-state, invasion fronts from the outer stream are formed along the top and bottom walls of the microfluidic device.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2021
The spread of pathogenic bacteria in unsaturated porous media, where air and liquid coexist in pore spaces, is the major cause of soil contamination by pathogens, soft rot in plants, food spoilage, and many pulmonary diseases. However, visualization and fundamental understanding of bacterial transport in unsaturated porous media are currently lacking, limiting the ability to address the above contamination- and disease-related issues. Here, we demonstrate a previously unreported mechanism by which bacterial cells are transported in unsaturated porous media.
View Article and Find Full Text PDFA major barrier to the clinical utilization of microfluidically generated water-in-oil droplets is the cumbersome washing steps required to remove the non-biocompatible organic oil phase from the droplets. In this paper, we report an on-chip magnetic water-in-water droplet generation and manipulation platform using a biocompatible aqueous two-phase system of a polyethylene glycol-polypropylene glycol-polyethylene glycol triblock copolymer (PEG-PPG-PEG) and dextran (DEX), eliminating the need for subsequent washing steps. By careful selection of a ferrofluid that shows an affinity toward the DEX phase (the dispersed phase in our microfluidic device), we generate magnetic DEX droplets in a non-magnetic continuous phase of PEG-PPG-PEG.
View Article and Find Full Text PDFHigher order emulsions are used in a variety of different applications in biomedicine, biological studies, cosmetics, and the food industry. Conventional droplet generation platforms for making higher order emulsions use organic solvents as the continuous phase, which is not biocompatible and as a result, further washing steps are required to remove the toxic continuous phase. Recently, droplet generation based on aqueous two-phase systems (ATPS) has emerged in the field of droplet microfluidics due to their intrinsic biocompatibility.
View Article and Find Full Text PDFMicrodroplets have been utilized for a wide range of applications in biomedicine and biological studies. Despite the importance of such droplets, their fabrication is associated with difficulties in practice that emerge from the incompatible nature of chemicals, such as surfactants and organic solvents, with biological environments. Therefore, microfluidic methods have recently emerged that create biocompatible water-in-water droplets based on aqueous two-phase systems (ATPS), most commonly composed of water and incompatible polymers, dextran (DEX) and polyethylene glycol (PEG).
View Article and Find Full Text PDFMicroparticles are used in a variety of different fields, such as drug delivery. Recently, non-spherical microparticle generation has become desirable. The high surface-to-volume ratio of non-spherical microparticles allows for enhanced targeting, and attachment to cells and tissue.
View Article and Find Full Text PDFDroplet microfluidics enables cellular encapsulation for biomedical applications such as single-cell analysis, which is an important tool used by biologists to study cells on a single-cell level, and understand cellular heterogeneity in cell populations. However, most cell encapsulation strategies in microfluidics rely on random encapsulation processes, resulting in large numbers of empty droplets. Therefore, post-sorting of droplets is necessary to obtain samples of purely cell-encapsulating droplets.
View Article and Find Full Text PDFHerein, we present a microfluidic platform that generates particle-stabilized water-in-water emulsions. The water-in-water system that we use is based on an aqueous two-phase system of polyethylene glycol (PEG) and dextran (DEX). DEX droplets are formed passively, in the continuous phase of PEG and carboxylated particle suspension at a flow-focusing junction inside a microfluidic device.
View Article and Find Full Text PDFWe present a simple microfluidic system that generates water-in-water, aqueous two phase system (ATPS) droplets, by passive flow focusing. ATPS droplet formation is achieved by applying weak hydrostatic pressures, with liquid-filled pipette tips as fluid columns at the inlets, to introduce low speed flows to the flow focusing junction. To control the size of the droplets, we systematically vary the interfacial tension and viscosity of the ATPS fluids and adjust the fluid column height at the fluid inlets.
View Article and Find Full Text PDFWe present a microfluidic method that controllably self-assembles microparticles into clusters at an aqueous two-phase liquid-liquid interface. The liquid-liquid interface is formed between converging flows of aqueous dextran and polyethylene glycol, in a microfluidic cross-slot device. We control the size of the self-assembled particle clusters as they pass through the liquid-liquid interface, by systematically varying the applied magnetic field gradient, and the interfacial tension of the liquid-liquid interface.
View Article and Find Full Text PDF