We consider the task of Medical Concept Normalization (MCN) which aims to map informal medical phrases such as "loosing weight" to formal medical concepts, such as "Weight loss". Deep learning models have shown high performance across various MCN datasets containing small number of target concepts along with adequate number of training examples per concept. However, scaling these models to millions of medical concepts entails the creation of much larger datasets which is cost and effort intensive.
View Article and Find Full Text PDFIdentifying medical persona from a social media post is critical for drug marketing, pharmacovigilance and patient recruitment. Medical persona classification aims to computationally model the medical persona associated with a social media post. We present a novel deep learning model for this task which consists of two parts: Convolutional Neural Networks (CNNs), which extract highly relevant features from the sentences of a social media post and average pooling, which aggregates the sentence embeddings to obtain task-specific document embedding.
View Article and Find Full Text PDF