A new catalyst has been developed that utilizes molybdenum oxide (MoO)/nickel molybdenum oxide (NiMoO) heterostructured nanorods coupled with Pt ultrafine nanoparticles for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) toward industrial-grade water splitting. This catalyst has been synthesized using a versatile approach and has shown to perform better than noble-metals catalysts, such as Pt/C and RuO, at industrial-grade current level (≥1000 mA·cm). When used simultaneously as a cathode and anode, the proposed material yields 10 mA·cm at a remarkably small cell voltage of 1.
View Article and Find Full Text PDFHerein, first-principles density functional theory calculations have been employed to unravel the interfacial geometries (composition and stability), electronic properties (density of states and differential charge densities), and charge carrier transfers (work function and energy band alignment) of a TiO(001)/FeS(100) heterojunction. Analyses of the structure and electronic properties reveal the formation of strong interfacial Fe-O and Ti-S ionic bonds, which stabilize the interface with an adhesion energy of -0.26 eV Å.
View Article and Find Full Text PDF