Silicone-in-water emulsions have found widespread use as lubricants, water repellants, softeners, binders, antiblocking agents, antislip agents, and defoamers across a diverse range of markets including textiles, coatings, pharmaceuticals, and home and personal care. Stable incorporation of silicone emulsions into formulated products for these applications can be a challenge. This study seeks to enable formulation by investigating the impact of the degree of ethoxylation of sodium lauryl ether sulfate (SLES) surfactants on their ability to displace surfactant stabilizer at the silicone-water interfaces of polydimethylsiloxane (PDMS)-in-water emulsion droplets.
View Article and Find Full Text PDFWe report an ionic hybrid based on silica nanoparticles as the anion and amine-terminated poly(ethylene oxide) (PEO) as a cation. The charge on the nanoparticle anion is carried by the surface hydroxyls. SAXS and TEM reveal an exceptional degree of dispersion of the silica in the polymer and high degree of order in both thin film and bulk forms.
View Article and Find Full Text PDFWe report for the first time an ionic fluid based on hydroxylated fullerenes (fullerols). The ionic fluid was synthesized by neutralizing the fully protonated fullerol with an amine terminated polyethylene/polypropylene oxide oligomer (Jeffamine). The ionic fluid was compared to a control synthesized by mixing the partially protonated form (sodium form) of the fullerols with the same oligomeric amine in the same ratio as in the ionic fluids (20 wt% fullerol).
View Article and Find Full Text PDF