Publications by authors named "Nikhil Cherian Kurian"

Intratumor heterogeneity (ITH) presents challenges for precision oncology, but methods for its spatial quantification, scalable at population levels, do not exist. Based on previous work showing that admixture of PAM50 subtype can be measured from bulk tissue using transcriptomic data, we trained a deep neural network (DNN) to quantify subtype ITH in Luminal A (LumA) breast cancer from routinely-stained whole slide images. We tested the hypothesis that subtype admixture detected in images was associated with tumor aggressiveness and adverse outcome.

View Article and Find Full Text PDF

The suggestion that the systemic immune response in lymph nodes (LNs) conveys prognostic value for triple-negative breast cancer (TNBC) patients has not previously been investigated in large cohorts. We used a deep learning (DL) framework to quantify morphological features in haematoxylin and eosin-stained LNs on digitised whole slide images. From 345 breast cancer patients, 5,228 axillary LNs, cancer-free and involved, were assessed.

View Article and Find Full Text PDF

Histopathology whole slide images (WSIs) are being widely used to develop deep learning-based diagnostic solutions, especially for precision oncology. Most of these diagnostic softwares are vulnerable to biases and impurities in the training and test data which can lead to inaccurate diagnoses. For instance, WSIs contain multiple types of tissue regions, at least some of which might not be relevant to the diagnosis.

View Article and Find Full Text PDF

We had released MoNuSAC2020 as one of the largest publicly available, manually annotated, curated, multi-class, and multi-instance medical image segmentation datasets. Based on this dataset, we had organized a challenge at the International Symposium on Biomedical Imaging (ISBI) 2020. Along with the challenge participants, we had published an article summarizing the results and findings of the challenge (Verma et al.

View Article and Find Full Text PDF

Deep learning (DL) thrives on the availability of a large number of high quality images with reliable labels. Due to the large size of whole slide images in digital pathology, patches of manageable size are often mined for use in DL models. These patches are variable in quality, weakly supervised, individually less informative, and noisily labelled.

View Article and Find Full Text PDF

Detecting various types of cells in and around the tumor matrix holds a special significance in characterizing the tumor micro-environment for cancer prognostication and research. Automating the tasks of detecting, segmenting, and classifying nuclei can free up the pathologists' time for higher value tasks and reduce errors due to fatigue and subjectivity. To encourage the computer vision research community to develop and test algorithms for these tasks, we prepared a large and diverse dataset of nucleus boundary annotations and class labels.

View Article and Find Full Text PDF

Context: Several therapeutically important mutations in cancers are economically detected using immunohistochemistry (IHC), which highlights the overexpression of specific antigens associated with the mutation. However, IHC panels can be imprecise and relatively expensive in low-income settings. On the other hand, although hematoxylin and eosin (H&E) staining used to visualize the general tissue morphology is a routine and low cost, it does not highlight any specific antigen or mutation.

View Article and Find Full Text PDF