Publications by authors named "Nikhil Bhandarkar"

Dry eye disease (DED) is one of the most common eye problems in the aging population. Hyperosmolarity triggers the immune response in DED and consequently activates the self-perpetuating immune cycle, leading to chronic damage of the ocular surface. This event causes symptoms such as a burning sensation, irritation, redness, photophobia, and blurred vision in DED patients.

View Article and Find Full Text PDF

Purpose: South Asians, especially Indians, face higher diabetes-related risks despite lower body mass index (BMI) compared with the White population. Limited research connects low-carbohydrate high-fat (LCHF)/ketogenic diets to metabolic changes in this group. Systematic studies are needed to assess the long-term effects of the diet, such as ocular health.

View Article and Find Full Text PDF

Circulating miRNAs are increasingly being considered as biomarkers in various medical contexts, but the value of analyzing isomiRs (isoforms of canonical miRNA sequences) has not frequently been assessed. Here we hypothesize that an in-depth analysis of the full circulating miRNA landscape could identify specific isomiRs that are stronger biomarkers, compared to their corresponding miRNA, for identifying increased CV risk in patients with non-alcoholic fatty liver disease (NAFLD)-a clinical unmet need. Plasma miRNAs were sequenced with next-generation sequencing (NGS).

View Article and Find Full Text PDF

Waste from food production can be re-purposed as raw material for usable products to decrease industrial waste. Coffee pulp is 29% of the dry weight of coffee cherries and contains caffeine, chlorogenic acid, trigonelline, diterpenes and fibre. We investigated the attenuation of signs of metabolic syndrome induced by high-carbohydrate, high-fat diet in rats by dietary supplementation with 5% freeze-dried coffee pulp for the final 8 weeks of a 16-week protocol.

View Article and Find Full Text PDF

In chronic obesity, activated adipose tissue proinflammatory cascades are tightly linked to metabolic dysfunction. Yet, close temporal analyses of the responses to obesogenic environment such as high-fat feeding (HFF) in susceptible mouse strains question the causal relationship between inflammation and metabolic dysfunction, and/or raises the possibility that certain inflammatory cascades play adaptive/homeostatic, rather than pathogenic roles. Here, we hypothesized that CTRP6, a C1QTNF family member, may constitute an early responder to acute nutritional changes in adipose tissue, with potential physiological roles.

View Article and Find Full Text PDF

In humans, exercise-induced thermogenesis is a markedly variable component of total energy expenditure, which had been acutely affected worldwide by COVID-19 pandemic-related lockdowns. We hypothesized that dietary macronutrient composition may affect metabolic adaptation/fuel selection in response to an acute decrease in voluntary activity. Using mice fed short-term high-fat diet (HFD) compared to low-fat diet (LFD)-fed mice, we evaluated whole-body fuel utilization by metabolic cages before and 3 days after omitting a voluntary running wheel in the cage.

View Article and Find Full Text PDF

Objective: Orexin/hypocretin (Ox) and its receptors (OxR), a neuroendocrine system centrally regulating sleep/wakefulness, were implicated in the regulation of peripheral metabolism. It was hypothesized that human adipose tissue constitutes a direct target of the OxA/OxR system that associates with distinct metabolic profile(s).

Methods: Serum Ox levels and abdominal subcutaneous and visceral adipose tissue expression of Ox/HCRT, OxR1/HCRTR1, and OxR2/HCRTR2 were measured in n = 81 patients.

View Article and Find Full Text PDF

Less than a year following the Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak, variants of concern have emerged in the form of variant Alpha (B.1.1.

View Article and Find Full Text PDF

The complex pathophysiology of atrial fibrillation (AF) is governed by multiple risk factors in ways that are still elusive. Basic electrophysiological properties, including atrial effective refractory period (AERP) and conduction velocity, are major factors determining the susceptibility of the atrial myocardium to AF. Although there is a great need for affordable animal models in this field of research, in vivo rodent studies are limited by technical challenges.

View Article and Find Full Text PDF

Coffee brewing produces spent coffee grounds as waste; few studies have investigated the health benefits of these grounds. This study investigated responses to spent coffee grounds in a diet-induced rat model of metabolic syndrome. Male Wistar rats aged 8-9 weeks were fed either corn starch-rich diet or high-carbohydrate, high-fat diet for 16 weeks, which were supplemented with 5% spent coffee grounds during the last 8 weeks.

View Article and Find Full Text PDF

Chlorogenic acid as a constituent of coffee is consumed regularly in the human diet. Chlorogenic acid intake has been associated with decreased risk of cardiovascular disease and type 2 diabetes. We hypothesized that chlorogenic acid would improve cardiovascular, liver, and metabolic responses in a rat model of metabolic syndrome induced by a high-carbohydrate, high-fat diet.

View Article and Find Full Text PDF

Inducing testosterone deficiency, as the standard treatment of prostate cancer, may cause metabolic disorders including insulin resistance, dyslipidemia, central obesity, cardiovascular diseases, and type 2 diabetes. This study measured responses to testosterone deficiency in high-carbohydrate, high-fat (H) diet-fed rats. We then tested whether eicosapentaenoic acid (EPA)/docosahexaenoic acid (DHA) ethyl esters (Omacor) reversed these metabolic changes.

View Article and Find Full Text PDF