Proteins with polybasic clusters bind to negatively charged phosphoinositides at the cell membrane. In this review, I have briefly discussed the types of phosphoinositides naturally found on membrane surfaces and how they recruit protein complexes for carrying out the process of signal transduction. A large number of researchers from around the world are now focusing their attention on protein-membrane binding, as these interactions have started to offer us a much better insight into the process of cell signaling.
View Article and Find Full Text PDFWe describe new signalling consequences for PPIP5K1 (diphosphoinositol pentakisphosphate kinase type 1)-mediated phosphorylation of InsP6 and 5-InsP7 to 1-InsP7 and InsP8. In NIH 3T3 cells, either hyperosmotic stress or receptor activation by PDGF (platelet-derived growth factor) promoted translocation of PPIP5K1 from the cytoplasm to the plasma membrane. The PBD1 (polyphosphoinositide-binding domain) in PPIP5K1 recapitulated that translocation.
View Article and Find Full Text PDFIns(1,4,5)P(3) is a classical intracellular messenger: stimulus-dependent changes in its levels elicits biological effects through its release of intracellular Ca(2+) stores. The Ins(1,4,5)P(3) response is "switched off" by its metabolism to a range of additional inositol phosphates. These metabolites have themselves come to be collectively described as a signaling "family".
View Article and Find Full Text PDFThe inositol pyrophosphates are multifunctional signalling molecules. One of the families of enzymes that synthesize the inositol pyrophosphates are the Vip1/PPIP5Ks (PP-InsP5 kinases). The kinase domains in Vip1/PPIP5Ks have been mapped to their N-terminus.
View Article and Find Full Text PDFIn countries where adulthood is considered to be attained at age eighteen, 2011 can be the point at which the diphosphoinositol polyphosphates might formally be described as "coming of age", since these molecules were first fully defined in 1993 (Menniti et al., 1993; Stephens et al., 1993b).
View Article and Find Full Text PDFAnnexin A2 is a phospholipid-binding protein that forms a heterotetramer (annexin II-p11 heterotetramer; A2t) with p11 (S100A10). It has been reported that annexin A2 is involved in binding to phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) and in inducing membrane microdomain formation. To understand the mechanisms underlying these findings, we determined the membrane binding properties of annexin A2 wild type and mutants both as monomer and as A2t.
View Article and Find Full Text PDF