We investigate the performance of uncertainty quantification methods, namely deep ensembles and bootstrap resampling, for deep neural network (DNN) predictions of transition metal K-edge X-ray absorption near-edge structure (XANES) spectra. Bootstrap resampling combined with our multi-layer perceptron (MLP) model provides an accurate assessment of uncertainty with >90% of all predicted spectral intensities falling within ±3 of the true values for data across the nine first-row transition metal K-edge XANES spectra.
View Article and Find Full Text PDFIEEE Trans Neural Syst Rehabil Eng
April 2019
Brain-computer interfaces (BCI) harnessing steady state visual evoked potentials (SSVEPs) manipulate the frequency and phase of visual stimuli to generate predictable oscillations in neural activity. For BCI spellers, oscillations are matched with alphanumeric characters allowing users to select target numbers and letters. Advances in BCI spellers can, in part, be accredited to subject-specific optimization, including; 1) custom electrode arrangements; 2) filter sub-band assessments; and 3) stimulus parameter tuning.
View Article and Find Full Text PDF