Membrane fouling is a critical bottleneck to the widespread adoption of membrane separation processes. It diminishes the membrane permeability and results in high operational energy costs. The current study presents optimizing the operating parameters of a novel rotating biological contactor (RBC) integrated with an external membrane (RBC + ME) that combines membrane technology with an RBC.
View Article and Find Full Text PDFMembrane-based technology is an attractive option for the treatment of oily wastewater because of its high oil removal efficiency, small footprint and operational simplicity. However, filtration performance is highly restricted by membrane fouling, especially when treating oil/water emulsion as a result of strong interaction between oil droplets and the hydrophobic property of the membrane. This study explores the fabrication of polyvinylidene fluoride (PVDF)-based membrane via the vapour induced phase separation (VIPS) method while incorporating polyvinyl pyrrolidone (PVP) as a hydrophilic additive to encounter membrane fouling issues and improve membrane filterability.
View Article and Find Full Text PDFFlue gas contains high amount of low-grade heat and water vapor that are attractive for recovery. This study assesses performance of a hybrid of water scrubber and membrane distillation (MD) to recover both heat and water from a simulated flue gas. The former help to condense the water vapor to form a hot liquid flow which later used as the feed for the MD unit.
View Article and Find Full Text PDFIncreasing global concern on clean water scarcity and environmental sustainability drive invention in water reclamation technology. Laundry wastewater reclamation via membrane technology faces the challenge of membrane fouling. This paper assesses a tilting-the-filtration-panel filtration system for the treatment of real laundry wastewater filtration aimed for water and detergent reuse.
View Article and Find Full Text PDFStandalone membrane distillation (MD) and forward osmosis (FO) have been considered as promising technologies for produced water treatment. However, standalone MD is still vulnerable to membrane-wetting and scaling problems, while the standalone FO is energy-intensive, since it requires the recovery of the draw solution (DS). Thus, the idea of coupling FO and MD is proposed as a promising combination in which the MD facilitate DS recovery for FO-and FO acts as pretreatment to enhance fouling and wetting-resistance of the MD.
View Article and Find Full Text PDFA petroleum refinery heavily depends on crude oil as its main feedstock to produce liquid fuels and chemicals. In the long term, this unyielding dependency is threatened by the depletion of the crude oil reserve. However, in the short term, its price highly fluctuates due to various factors, such as regional and global security instability causing additional complexity on refinery production planning.
View Article and Find Full Text PDFA membrane bioreactor enhances the overall biological performance of a conventional activated sludge system for wastewater treatment by producing high-quality effluent suitable for reuse. However, membrane fouling hinders the widespread application of membrane bioreactors by reducing the hydraulic performance, shortening membrane lifespan, and increasing the operational costs for membrane fouling management. This study assesses the combined effect of membrane surface corrugation and a tilted panel in enhancing the impact of air bubbling for membrane fouling control in activated sludge filtration, applicable for membrane bioreactors.
View Article and Find Full Text PDFThe competitiveness of algae as biofuel feedstock leads to the growth of membrane filtration as one of promising technologies for algae harvesting. Nanofiber membrane (NFM) was found to be efficient for microalgae harvesting via membrane filtration, but it is highly limited by its weak mechanical strength. The main objective of this study is to enhance the applicability of nylon 6,6 NFM for microalgae filtration by optimizing the operational parameters and applying solvent vapor treatment to improve its mechanical strength.
View Article and Find Full Text PDFThe removal of impurities from water or wastewater by the membrane filtration process has become more reliable due to good hydraulic performance and high permeate quality. The filterability of the membrane can be improved by having a material with a specific pore structure and good hydrophilic properties. This work aims at preparing a polyvinylidene fluoride (PVDF) membrane incorporated with phospholipid in the form of a 2-methacryloyloxyethyl phosphorylcholine, polymeric additive in the form of polyvinylpyrrolidone, and its combination with inorganic nanosilica from a renewable source derived from bagasse.
View Article and Find Full Text PDFMembrane distillation (MD) is an attractive technology for desalination, mainly because its performance that is almost independent of feed solute concentration as opposed to the reverse osmosis process. However, its widespread application is still limited by the low water flux, low wetting resistance and high scaling vulnerability. This study focuses on addressing those limitations by developing a novel corrugated polyvinylidene difluoride (PVDF) membrane via an improved imprinting technique for MD.
View Article and Find Full Text PDF