Publications by authors named "Nijee Sharma"

Objectives/hypothesis: Injuries of cranial nerves that are distal to but near the motor nucleus might result in retrograde motoneuron cell death. The hypothesis of this article is that an intratemporal crush injury of the facial nerve in rats can cause facial motor nuclei cell death.

Study Design: Prospective, randomized, controlled animal study.

View Article and Find Full Text PDF

Objectives/hypothesis: To investigate the effects of various combinatorial treatments, consisting of a tapering dose of prednisone (P), a brief period of nerve electrical stimulation (ES), and systemic testosterone propionate (TP) on improving functional recovery following an intratemporal facial nerve crush injury.

Study Design: Prospective, controlled animal study.

Methods: After a right intratemporal facial nerve crush, adult male Sprague-Dawley rats were divided into the following eight treatment groups: 1) no treatment, 2) P only, 3) ES only, 4) ES + P, 5) TP only, 6) TP + P, 7) ES + TP, and 8) ES + TP + P.

View Article and Find Full Text PDF

Purpose: The neurotherapeutic effects of nerve electrical stimulation and gonadal steroids have independently been demonstrated. The purpose of this study was to investigate the therapeutic potential of a combinatorial treatment strategy of electrical stimulation and gonadal steroids on peripheral nerve regeneration.

Methods: Following a facial nerve crush axotomy in gonadectomized adult male rats, testosterone propionate (TP), dihydrotestosterone (DHT), or estradiol (E(2)) was systemically administered with/without daily electrical stimulation of the proximal nerve stump.

View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to compare the recovery and motor nerve conduction between two types of facial nerve injuries: extratemporal and intratemporal crush injuries in rats.
  • Adult male Sprague-Dawley rats were used, divided into four groups, and assessed over eight weeks to measure the return of facial function and nerve conduction.
  • Results showed that rats with extratemporal injuries fully recovered in about 2 weeks, while rats with intratemporal injuries had delayed recovery and reduced nerve function even after 8 weeks, highlighting the impact of injury location on recovery outcomes.
View Article and Find Full Text PDF

As functional recovery following peripheral nerve injury is dependent upon successful repair and regeneration, treatments that enhance different regenerative events may be advantageous. Using a rat facial nerve crush axotomy model, our lab has previously investigated the effects of a combinatorial treatment strategy, consisting of electrical stimulation (ES) of the proximal nerve stump and testosterone propionate (TP) administration. Results indicated that the two treatments differentially enhance facial nerve regenerative properties, whereby ES reduced the delay before sprout formation, TP accelerated the overall regeneration rate, and the combinatorial treatment had additive effects.

View Article and Find Full Text PDF

Objective: To study the effect of electrical stimulation on accelerating facial nerve functional recovery from a crush injury in the rat model.

Study Design: Experimental.

Method: The main trunk of the right facial nerve was crushed just distal to the stylomastoid foramen, causing right-sided facial paralysis in 17 Sprague-Dawley rats.

View Article and Find Full Text PDF

Objective: We investigated the combined effects of electrical stimulation and testosterone propionate on overall recovery time in rats with extracranial crush injuries to the facial nerve.

Study Design: Male rats underwent castration 3 to 5 days prior to right facial nerve crush injury and electrode implantation. Rats were randomly assigned to two groups: crush injury + testosterone or crush injury with electrical stimulation + testosterone.

View Article and Find Full Text PDF

Despite fission yeast's history of modeling salient cellular processes, it has not yet been used to model human neurodegeneration-linked protein misfolding. Because alpha-synuclein misfolding and aggregation are linked to Parkinson's disease (PD), here, we report a fission yeast (Schizosaccharomyces pombe) model that evaluates alpha-synuclein misfolding, aggregation, and toxicity and compare these properties with those recently characterized in budding yeast (Saccharomyces cerevisiae). Wild-type alpha-synuclein and three mutants (A30P, A53T, and A30P/A53T) were expressed with thiamine-repressible promoters (using vectors of increasing promoter strength: pNMT81, pNMT41, and pNMT1) to test directly in living cells the nucleation polymerization hypothesis for alpha-synuclein misfolding and aggregation.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a common neurodegenerative disorder that results from the selective loss of midbrain dopaminergic neurons. Misfolding and aggregation of the protein alpha-synuclein, oxidative damage, and proteasomal impairment are all hypotheses for the molecular cause of this selective neurotoxicity. Here, we describe a Saccharomyces cerevisiae model to evaluate the misfolding, aggregation, and toxicity-inducing ability of wild-type alpha-synuclein and three mutants (A30P, A53T, and A30P/A53T), and we compare regulation of these properties by dysfunctional proteasomes and by oxidative stress.

View Article and Find Full Text PDF