The in vitro degradation behavior of self-reinforced bioactive glass-containing composites was investigated comparatively with plain self-reinforced matrix polymer. The materials used were spherical bioactive glass 13-93 particles, with a particle size distribution of 50-125 microm, as a filler material and bioabsorbable poly-L,DL-lactide 70/30 as a matrix material. The composites containing 0, 20, 30, 40 and 50 wt.
View Article and Find Full Text PDFTwo self-reinforced poly(L/DL)lactide 70:30 or self-reinforced poly (L/DL)lactide 70:30/ bioactive glass (SR-P(L/DL)LA/bioactive glass) composite rods (2 mm x 40 mm) were implanted into the dorsal subcutaneous tissue and osteotomies of the distal femur were fixed with these rods (2 mm x 26 mm) in 36 rabbits. The follow-up times varied from 3 to 100 weeks. After the animals were killed, three-point bending and shear tests and molecular weight measurements were performed for subcutaneously placed rods.
View Article and Find Full Text PDFSelf-reinforced poly(L/DL)lactide 70:30/bioactive glass [SR-P(L/DL)LA/bioactive glass] composite rods, 2 mm in diameter and 36 mm in length, were implanted into the dorsal subcutaneous tissue of 16 rats. Osteotomies of the distal femur were fixed with these rods (2 x 15 mm) in 64 other rats. The follow-up times varied from one week to one year.
View Article and Find Full Text PDFThe aim of this study was to investigate the in vitro and in vivo properties and degradation of (1) self-reinforced (SR) lactide copolymer, P(L/DL)LA 70:30, and (2) SR composites of the same polylactide and bioactive glass 13-93. The following three polymer and polymer-bioactive glass samples were studied: SR-PLA70, SR-PLA70 + BaG15s, and SR-PLA70 + BaG20c. In vitro behavior was studied in a phosphate-buffered saline for 87 weeks at 37 degrees +/- 1 degrees C and a pH of 7.
View Article and Find Full Text PDF