Publications by authors named "Niina H Jalarvo"

Liquid-liquid phase separation (LLPS) constitutes a crucial phenomenon in biological self-organization, not only intervening in the formation of membraneless organelles but also triggering pathological protein aggregation, which is a hallmark in neurodegenerative diseases. Employing incoherent quasi-elastic neutron spectroscopy (QENS), we examine the short-time self-diffusion of a model protein undergoing LLPS as a function of phase splitting and temperature to access information on the nanosecond hydrodynamic response to the cluster formation both within and outside the LLPS regime. We investigate the samples as they dissociate into microdroplets of a dense protein phase dispersed in a dilute phase as well as the separated dense and dilute phases obtained from centrifugation.

View Article and Find Full Text PDF

Polymers of intrinsic microporosity exhibit a combination of high gas permeability and reasonable permselectivity, which makes them attractive candidates for gas separation membrane materials. The diffusional selective gas transport properties are connected to the molecular mobility of these polymers in the condensed state. Incoherent quasielastic neutron scattering was carried out on two polymers of intrinsic microporosity, PIM-EA-TB(CH) and its demethylated counterpart PIM-EA-TB(H), which have high Brunauer-Emmett-Teller surface area values of 1030 m g and 836 m g, respectively.

View Article and Find Full Text PDF

The emission of white light from a single material is atypical and is of interest for solid-state lighting applications. Broadband light emission has been observed in some layered perovskite derivatives, PbBr ( = -NH), and correlates with static structural distortions corresponding to out-of-plane tilting of the lead bromide octahedra. While materials with different organic cations can yield distinct out-of-plane tilts, the underlying origin of the octahedral tilting remains poorly understood.

View Article and Find Full Text PDF

The formation of molecular assemblies in protein solutions is of strong interest both from a fundamental viewpoint and for biomedical applications. While ordered and desired protein assemblies are indispensable for some biological functions, undesired protein condensation can induce serious diseases. As a common cofactor, the presence of salt ions is essential for some biological processes involving proteins, and in aqueous suspensions of proteins can also give rise to complex phase diagrams including homogeneous solutions, large aggregates, and dissolution regimes.

View Article and Find Full Text PDF

Molecular dynamics plays an important role for the biological function of proteins. For protein ligand interactions, changes of conformational entropy of protein and hydration layer are relevant for the binding process. Quasielastic neutron scattering (QENS) was used to investigate differences in protein dynamics and conformational entropy of ligand-bound and ligand-free streptavidin.

View Article and Find Full Text PDF

The dynamics of water in polyethylene oxide (PEO)/LiCl solution has been studied with quasielastic neutron scattering experiments and molecular dynamics (MD) simulations. Two different time scales of water diffusion representing interfacial water and bulk water dynamics have been identified. The measured diffusion coefficient of interfacial water remained 5-10 times smaller than that of bulk water, but both were slowed by approximately 50% in the presence of Li(+).

View Article and Find Full Text PDF