Publications by authors named "Nihuan Wu"

Engineering hollow fibers with precise surface microstructures is challenging; yet, essential for guiding cells alignment and ensuring proper vascular tissue function. Inspired by Euplectella sponges, a novel strategy to engineer biomimetic hollow fibers with spiral surface microstructures is developed. Using oxidized bacterial cellulose, bacterial cellulose, and polydopamine, a "brick-and-mortar" scaffold is created through precise shear control during microfluidic coaxial spinning.

View Article and Find Full Text PDF

Skin is the first defense barrier of the human body, which can resist the invasion of external dust, microorganisms and other pollutants, and ensure that the human body maintains the homeostasis of the internal environment. Once the skin is damaged, the health threat to the human body will increase. Wound repair and the human internal environment are a dynamic process.

View Article and Find Full Text PDF

Bacterial cellulose/oxidized bacterial cellulose nanofibrils (BC/oxBCNFs) macro-fibers are developed as a novel scaffold for vascular tissue engineering. Utilizing a low-speed rotary coagulation spinning technique and precise solvent control, macro-fibers with a unique heterogeneous structure with dense surface and porous core are created. Enhanced by a polydopamine (PDA) coating, these macro-fibers offer robust mechanical integrity, high biocompatibility, and excellent cell adhesion.

View Article and Find Full Text PDF

The challenge of bioprinting vascularized tissues is structure retention and in situ endothelialization. The issue is addressed by adopting an aqueous-in-aqueous 3D embedded bioprinting strategy, in which the interfacial coacervation of the cyto-mimic aqueous two-phase systems (ATPS) are employed for maintaining the suspending liquid architectures, and serving as filamentous scaffolds for cell attachment and growth. By incorporating endothelial cells in the ink phase of ATPS, tubular lumens enclosed by coacervated complexes of polylysine (PLL) and oxidized bacteria celluloses (oxBC) can be cellularized with a confluent endothelial layer, without any help of adhesive peptides.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionvpvaep5824tfnlbqhrgn7493u210ek45): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once