Objective: To develop a stable and efficient delivery system for baicalin, a flavonoid with potential antioxidant and antiaging properties, to overcome its limitations in solubility, stability, and skin permeability.
Methods: Baicalin was encapsulated using ATP synthase molecular motor technology into bio-vesicles derived from yeast/bacillus cell membranes, forming "motor baicalin" (MB). The liposome baicalin (LB), baicalin raw material (BRM), and bio-vesicles were used for comparison.
DNA damage in spermatozoa is a major cause of male infertility. It is also associated with adverse reproductive outcomes (including reduced fertilization rates, embryo quality and pregnancy rates, and higher rates of spontaneous miscarriage). The damage to sperm DNA occurs during the production and maturation of spermatozoa, as well as during their transit through the male reproductive tract.
View Article and Find Full Text PDFBackground: As the largest organ of the body, the skin is constantly subjected to ultraviolet radiation (UVR), leading to inflammations and changes that mirror those seen in chronological aging. Although various small molecule drugs have been explored for treating skin photoaging, they typically suffer from low stability and a high incidence of adverse reactions. Consequently, the continued investigation of photoaging treatments, particularly those utilizing herbal products, remains a critical clinical endeavor.
View Article and Find Full Text PDFBackground: The assessment of skin aging through skin measurements faces limitations, making perceived age evaluation a more valuable and direct tool for assessing skin aging. Given that the aging process markedly affects the appearance of the eye contour, characterizing the eye region could be beneficial for perceived age assessment. This study aimed to analyze age-correlated changes in the eye contour within the Chinese Han female population and to develop, validate, and apply a multiple linear regression model for predicting perceived age.
View Article and Find Full Text PDFBackground: Repeated exposure to UV generates excessive reactive oxygen species (ROS) and damages the enzymatic antioxidant defense system including quinone oxidoreductase 1 (NQO1) and superoxide dismutase (SOD) in skin. Topical application of antioxidants may prevent the undesired damage of cellular proteins, lipids and DNA in skin. Dimethylmethoxy chromanol (DMC) is a bioinspired molecule, designed to be a structural analog to the γ-tocopherol that is naturally present in vegetables and plants.
View Article and Find Full Text PDFBackground: Sex hormone-related diseases, encompassing a wide range of conditions from reproductive disorders to certain cancers, pose significant health challenges worldwide. Recent scientific investigations have highlighted the intricate interplay between the gut microbiome and sex hormone regulation, indicating the potential for microbiota-targeted interventions in the management of such diseases. Although individual studies have elucidated the influence of the gut microbiome on sex hormones, a comprehensive cross-sectional examination of the population-wide prevalence of probiotic intake and its correlation with sex hormones is still lacking.
View Article and Find Full Text PDFThe Lanping Pb-Zn mine is the largest source of Pb and Zn ores in China, thus posing a great threat to local ecosystems and human health. A total of seven heavy metals (Zn, Pb, Ni, Cu, Cr, Cd, and As) in the Bijiang River near the Pb-Zn mine were measured in winter and summer to assess their spatial-temporal enrichment, ecological risk, and source-oriented health risk in periphytic biofilms. Positive matrix factorization (PMF) receptor model and clustering analysis were used to quantitatively identify pollution sources.
View Article and Find Full Text PDFDrying-rewetting (D-RW) cycles can induce changes in biofilms by forcing the microbial community to tolerate and adapt to environmental pressure. Existing studies have mostly focused on the impact of D-RW cycles on the microbial community structure, and little attention has been paid to how D-RW cycles may change the biofilm tolerance and adsorption of heavy metals. We experimentally evaluated the effect of repeated D-RW cycles on the Cd and Pb adsorption and tolerance of biofilms.
View Article and Find Full Text PDFTitanium dioxide nanoparticles (TiO NPs) easily combine with other pollutants such as heavy metals because of their excellent physiochemical properties. However, how such an interaction may affect the binding behavior of metals onto biofilms remains largely unclear. This study, examined the effects of TiO NPs on Cd accumulation and toxicity for natural periphytic biofilms were examined.
View Article and Find Full Text PDFHerein, surface water and periphytic biofilm samples were collected from 16 sites along the Lancang River, China, to assess the spatial distribution, enrichment factor (EF), potential ecological risk index (RI), and associated source-oriented health risks of heavy metal elements (As, Cd, Co, Cr, Cu, Ni, Pb, V, and Zn) in the samples. Results showed that the levels of heavy metals were significantly lower in the surface water samples than in the biofilm samples (one-way analysis of variance, p < 0.001).
View Article and Find Full Text PDFDrying and rewetting can markedly influence the microbial structure and function of river biofilm communities and potentially result in the release of metal ions from biofilms containing metals. However, little information is available on the response of metal-enriched biofilms to drying and rewetting over time. In this study, natural biofilms were allowed to develop in four rotating annular bioreactors for 2-11 weeks, followed by drying for 5 days and rewetting for another 5 days.
View Article and Find Full Text PDF