Amphiphilic molecules can alter the wettability of soil minerals. To determine how the headgroup chemistry of amphiphiles determines these effects, we investigate a system of the clay montmorillonite with long-chain phospholipids. We use phosphatidylglycerol (PG) phospholipids to contrast with our previous work using phosphatidylethanolamine (PE) lipids.
View Article and Find Full Text PDFJ Colloid Interface Sci
November 2019
Hypothesis: While soil water repellency causes a variety of undesirable environmental effects, the underlying mechanism is unknown. We investigate the coupled effects of chemical characteristics and surface topology in a simple model system of two lipids, DSPE (1,2-distearoyl-sn-glycero-3-phosphoethanolamine) and DOPE (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine), and a clay substrate. These closely-related lipids allowed the study of how a small change in chemical structure influences the surface hydrophobicity.
View Article and Find Full Text PDFJ Chem Theory Comput
March 2018
Understanding how different classes of molecules move across biological membranes is a prerequisite to predicting a solute's permeation rate, which is a critical factor in the fields of drug design and pharmacology. We use biased molecular dynamics computer simulations to calculate and compare the free energy profiles of translocation of several small molecules across 1,2-dioleoyl- sn-glycero-3-phosphocholine (DOPC) lipid bilayers as a first step toward determining the most efficient method for free energy calculations. We study the translocation of arginine, a sodium ion, alanine, and a single water molecule using the metadynamics, umbrella sampling, and replica exchange umbrella sampling techniques.
View Article and Find Full Text PDF