Publications by authors named "Niharbala Devi"

The widespread use of neodymium-iron-boron (NdFeB) magnets has raised concerns about the environmental impact of their disposal, prompting the need for sustainable recycling strategies. Traditional solvents used in recycling are toxic and flammable, making them risky to use. Ionic liquids are safer and greener options with low vapor pressure, high stability, and less flammability.

View Article and Find Full Text PDF

Recycling spent Li-ion batteries (LIBs) is paramount to pursuing resource efficiency and environmental sustainability. This study introduces a synergistic approach for selectively leaching and separating strategic metals from waste LIBs, representing a more efficient alternative to traditional single-acid-based leaching methods. The research also thoroughly analyzes diverse extraction parameters, aiming to achieve clean metal separation through synergistic concepts rather than single-phase extraction.

View Article and Find Full Text PDF

Recovering precious metal ions like Co, Li, Mn, and Ni from discarded lithium-ion batteries (LIBs) has significant environmental and economic benefits. Also, graphite will be in high demand in the coming years due to the development of LIBs for use in electric vehicles (EVs) and the need for it for electrodes in a variety of energy storage devices. However, it has been overlooked during the recycling of used LIBs, which resulted in resource waste and environmental pollution.

View Article and Find Full Text PDF

Recycling cathodic materials from spent lithium-ion batteries (LIBs) is crucial not just for the environmental aspects but also for the supply of precious raw materials such as cobalt and lithium. As a result, developing a leaching process with low acid consumption, cost-effectiveness, low environmental impact, and high metal recovery is essential. In this article, the sustainable hydrometallurgical route for recovery of Li and Co from spent LIBs using DL-lactic acid as lixiviant is proposed.

View Article and Find Full Text PDF

Background: The waterborne or airborne radon causes carcinogenesis in the human bodies due to the continuous decay of α- and β- particles. The health risks related to radioactive radon instigate to develop an advanced technology for its removal from the environment. There are two standard techniques, such as aeration and activated carbon filtration, available for its removal.

View Article and Find Full Text PDF