The metal-to-insulator phase transition (MIT) in two-dimensional (2D) materials under the influence of a gating electric field has revealed interesting electronic behavior and the need for a deeper fundamental understanding of electron transport processes, while attracting much interest in the development of next-generation electronic and optoelectronic devices. Although the mechanism of the MIT in 2D semiconductors is a topic under debate in condensed matter physics, our work demonstrates the tunable percolative phase transition in few-layered MoSe field-effect transistors (FETs) using different metallic contact materials. Here, we attempted to understand the MIT through temperature-dependent electronic transport measurements by tuning the carrier density in a MoSe channel under the influence of an applied gate voltage.
View Article and Find Full Text PDFThe ubiquitous, rising demand for energy storage devices with ultra-high storage capacity and efficiency has drawn tremendous research interest in developing energy storage devices. Dielectric polymers are one of the most suitable materials used to fabricate electrostatic capacitive energy storage devices with thin-film geometry with high power density. In this work, we studied the dielectric properties, electric polarization, and energy density of PMMA/2D Mica nanocomposite capacitors where stratified 2D nanofillers are interfaced between the multiple layers of PMMA thin films using two heterostructure designs of the capacitors, PMMA/2D Mica/PMMA (PMP) and PMMA/2D Mica/PMMA/2D Mica/PMMA (PMPMP).
View Article and Find Full Text PDFObjectives: Dyslipidemia is a critical risk factor for cardiovascular disease. This study investigated the impact of 500 mg of spilanthol (SA3X) supplementation on lipid profiles in men with dyslipidemia using a randomized, parallel-group, placebo-controlled design.
Methods: A total of 279 male participants were randomly allocated to one of four groups: SA3X without exercise, placebo without exercise, SA3X with exercise, and placebo with exercise.
We report the controlled synthesis of iron oxide microcubes (IOMCs) through the self-assembly arrays of ferric oxide hydroxide nanorods (NRs). The formation of IOMCs involves a complex interplay of nucleation, self-assembly, and growth mechanisms influenced by time, thermal treatment, and surfactant dynamics. The self-assembly of vertically aligned NRs into IOMCs is controlled by dynamic magnetism properties and capping agents like cetyltrimethylammonium bromide (CTAB), whose concentration and temperature modulation dictate growth kinetics and structural uniformity.
View Article and Find Full Text PDFDielectric capacitors are critical components in electronics and energy storage devices. The polymer-based dielectric capacitors have the advantages of device flexibility, fast charge-discharge rates, low loss, and graceful failure. Elevating the use of polymeric dielectric capacitors for advanced energy applications such as electric vehicles (EVs), however, requires significant enhancement of their energy densities.
View Article and Find Full Text PDFTransition metal dichalcogenides (TMDs)-based field-effect transistors (FETs) are being investigated vigorously for their promising applications in optoelectronics. Despite the high optical response reported in the literature, most of them are studied at room temperature. To extend the application of these materials in a photodetector, particularly at a low temperature, detailed understanding of the photo response behavior of these materials at low temperatures is crucial.
View Article and Find Full Text PDFStructurally well-defined polymer-grafted nanoparticle hybrids are highly sought after for a variety of applications, such as antifouling, mechanical reinforcement, separations, and sensing. Herein, we report the synthesis of poly(methyl methacrylate) grafted- and poly(styrene) grafted-BaTiO nanoparticles using activator regeneration via electron transfer (ARGET ATRP) with a sacrificial initiator, atom transfer radical polymerization (normal ATRP), and ATRP with sacrificial initiator, to understand the role of the polymerization procedure in influencing the structure of nanoparticle hybrids. Irrespective of the polymerization procedure adopted for the synthesis of nanoparticle hybrids, we noticed PS grafted on the nanoparticles showed moderation in molecular weight and graft density (ranging from 30,400 to 83,900 g/mol and 0.
View Article and Find Full Text PDFDesigning high energy density dielectric capacitors for advanced energy storage systems needs nanocomposite-based dielectric materials, which can utilize the properties of both inorganic and polymeric materials. Polymer-grafted nanoparticle (PGNP)-based nanocomposites alleviate the problems of poor nanocomposite properties by providing synergistic control over nanoparticle and polymer properties. Here, we synthesize "core-shell" barium titanate-poly(methyl methacrylate) (BaTiO-PMMA) grafted PGNPs using surface-initiated atom transfer polymerization (SI-ATRP) with variable grafting densities of (0.
View Article and Find Full Text PDFHomogeneous and pinhole-free large-area perovskite films are required to realize the commercialization of perovskite modules and panels. Various large-area perovskite coatings were developed; however, at their film coating and drying stages, many defects were formed on the perovskite surface. Consequently, not only the devices lost substantial performance but also their long-term stability deteriorated.
View Article and Find Full Text PDFTo determine whether SA3X () supplementation improves serum testosterone levels, in comparison with placebo, in participants with erectile dysfunction (ED) and low testosterone levels. This double-blind placebo-controlled parallel-group was conducted in Hyderabad, India, among male participants who were randomized to SA3X therapy or placebo (1:1) for three months. The change of serum testosterone levels from baseline to months 1, 2, 3 and 6 (three months after completion of the intervention) were assessed using a mixed model repeated measures analysis.
View Article and Find Full Text PDFWith the electric power grid experiencing a rapid shift to the smart grid paradigm over a deregulated energy market, Internet of Things (IoT)-based solutions are gaining prominence, and innovative peer-to-peer (P2P) energy trading at a micro level is being deployed. Such advancement, however, leaves traditional security models vulnerable and paves the path for blockchain, a distributed ledger technology (DLT), with its decentralized, open, and transparency characteristics as a viable alternative. However, due to deregulation in energy trading markets, most of the prototype resilience regarding cybersecurity attack, performance and scalability of transaction broadcasting, and its direct impact on overall performances and attacks are required to be supported, which becomes a performance bottleneck with existing blockchain solutions such as Hyperledger, Ethereum, and so on.
View Article and Find Full Text PDFThe metal-to-insulator phase transition (MIT) in low-dimensional materials and particularly two-dimensional layered semiconductors is exciting to explore due to the fact that it challenges the prediction that a two-dimensional system must be insulating at low temperatures. Thus, the exploration of MITs in 2D layered semiconductors expands the understanding of the underlying physics. Here we report the MIT of a few-layered MoSe field effect transistor under a gate bias (electric field) applied perpendicular to the MoSe layers.
View Article and Find Full Text PDFThe power conversion efficiency (PCE) of perovskite solar cells (PSCs) has increased and levels with silicon solar cells; however, their commercialization has not yet been realized because of their poor long-term stability. One of the primary causes of the instability of PSC devices is the large concentration of defects in the polycrystalline perovskite film. Such defects limit the device performance besides triggering hysteresis and device instability.
View Article and Find Full Text PDFThe maximum capacitive energy stored in polymeric dielectric capacitors, which are ubiquitous in high-power-density devices, is dictated by the dielectric breakdown strength of the dielectric polymer. The fundamental mechanisms of the dielectric breakdown, however, remain unclear. Based on a simple free-volume model of the polymer fluid state, we hypothesized that the free ends of linear polymer chains might act as "defect" sites, at which the dielectric breakdown can initiate.
View Article and Find Full Text PDFWith the electric power grid experiencing a rapid shift to the smart grid paradigm over a deregulated energy market, Internet of Things (IoT) based solutions are gaining prominence and innovative Peer To Peer (P2P) energy trading at micro-level are being deployed. Such advancement, however leave traditional security models vulnerable and pave the path for Blockchain, an Distributed Ledger Technology (DLT) with its decentralized, open and transparency characteristics as a viable alternative. However, due to deregulation in energy trading markets, massive volumes of micro transactions are required to be supported, which become a performance bottleneck with existing Blockchain solution such as Hyperledger, Ethereum and so on.
View Article and Find Full Text PDFIntroduction: Low testosterone is usually associated with erectile dysfunction (ED). SA3X () has proven to be effective in alleviating symptoms of ED, which could be due to an alteration in serum testosterone levels. This study was carried out to evaluate the change in testosterone levels in participants with ED supplemented with SA3X for three months.
View Article and Find Full Text PDFThe power conversion efficiency (PCE) of perovskite solar cells has been showing rapid improvement in the last decade. However, still, there is an unarguable performance deficit compared with the Schockley-Queisser (SQ) limit. One of the major causes for such performance discrepancy is surface and grain boundary defects.
View Article and Find Full Text PDFAs a result of the proliferation of digital and network technologies in all facets of modern society, including the healthcare systems, the widespread adoption of Electronic Healthcare Records (EHRs) has become the norm. At the same time, Blockchain has been widely accepted as a potent solution for addressing security issues in any untrusted, distributed, decentralized application and has thus seen a slew of works on Blockchain-enabled EHRs. However, most such prototypes ignore the performance aspects of proposed designs.
View Article and Find Full Text PDFIntroduction has been used as an aphrodisiac in India and other countries. However, studies concerning humans have been limited. This randomized controlled trial was carried out to evaluate the effect of SA3X capsules containing 500 mg of on sexual function domain scores in sexually active men with symptoms of erectile dysfunction (ED) using the Men's Sexual Health Questionnaire (MSHQ).
View Article and Find Full Text PDFIntroduction: Spilanthol, an active metabolite of the herb , has many biological and pharmacological effects with limited studies on humans.
Objectives: To determine the extent of increase/decrease in muscle mass and sexual frequency over a period of 3 weeks and 2 months in participants consuming SA3X capsules (containing 500 mg of extract, standardized to 3.5% spilanthol delivering 17.
Magnetic field- and polarization-dependent measurements on bright and dark excitons in monolayer WSe combined with time-dependent density functional theory calculations reveal intriguing phenomena. Magnetic fields up to 25 T parallel to the WSe plane lead to a partial brightening of the energetically lower lying exciton, leading to an increase of the dephasing time. Using a broadband femtosecond pulse excitation, the bright and partially allowed excitonic state can be excited simultaneously, resulting in coherent quantum beating between these states.
View Article and Find Full Text PDFThe synthesis of polymer-grafted nanoparticles (PGNPs) or hairy nanoparticles (HNPs) by tethering of polymer chains to the surface of nanoparticles is an important technique to obtain nanostructured hybrid materials that have been widely used in the formulation of advanced polymer nanocomposites. Ceramic-based polymer nanocomposites integrate key attributes of polymer and ceramic nanomaterial to improve the dielectric properties such as breakdown strength, energy density and dielectric loss. This review describes the "grafting from" and "grafting to" approaches commonly adopted to graft polymer chains on NPs pertaining to nano-dielectrics.
View Article and Find Full Text PDFPolymer nanocomposites (PNC) have attracted enormous scientific and technological interest due to their applications in energy storage, electronics, biosensing, drug delivery, cosmetics and packaging industry. Nanomaterials (platelet, fibers, spheroids, whiskers, rods) dispersed in different types of polymer matrices constitute such PNC. The degree of dispersion of the inorganic nanomaterials in the polymer matrix, as well as the structured arrangement of the nanomaterials, are some of the key factors influencing the overall performance of the nanocomposite.
View Article and Find Full Text PDFAmong the layered two dimensional semiconductors, molybdenum disulfide (MoS2) is considered to be an excellent candidate for applications in optoelectronics and integrated circuits due to its layer-dependent tunable bandgap in the visible region, high ON/OFF current ratio in field-effect transistors (FET) and strong light-matter interaction properties. In this study, using multi-terminal measurements, we report high broadband photocurrent response (R) and external quantum efficiency (EQE) of few-atomic layered MoS2 phototransistors fabricated on a SiO2 dielectric substrate and encapsulated with a thin transparent polymer film of Cytop. The photocurrent response was measured using a white light source as well as a monochromatic light of wavelength λ = 400 nm-900 nm.
View Article and Find Full Text PDF