Heterometallic cobalt -butylcalix[6 and 8]arenes have been generated from the reaction of lithium reagents (-BuLi or -BuOLi) or NaH with the parent calix[]arene and subsequent reaction with CoBr. The reverse route, involving the addition of generated Li[Co(O-Bu)] to -butylcalix[6 and 8]arene, has also been investigated. X-ray crystallography reveals the formation of complicated products incorporating differing numbers of cobalt and lithium or sodium centers, often with positional disorder, as well as, in some cases, the retention of halide.
View Article and Find Full Text PDFDue to their large specific surface areas and porosity, metal-organic frameworks (MOFs) have found many applications in catalysis, gas separation, and gas storage. However, their use as electronic components such as supercapacitors is stunted due to their poor electrical conductivity. We report a remedy for this by combining the MOF structure with polypyrrole (PPy), a well-known conductive polymer.
View Article and Find Full Text PDFReaction of differing amounts of vanadyl sulfate with p-tert-butylthiacalix[4]areneH4 and base allows access to the vanadyl-sulfate species [NEt4]4[(VO)4(μ3-OH)4(SO4)4]·½H2O (1), [HNEt3]5[(VO)5(μ3-O)4(SO4)4]·4MeCN (2·4MeCN) and [NEt4]2[(VO)6(O)2(SO4)4(OMe)(OH2)]·MeCN (3·MeCN). Similar use of p-tert-butylsulfonylcalix[4]areneH4, p-tert-butylcalix[8]areneH8 or p-tert-butylhexahomotrioxacalix[3]areneH3 led to the isolation of [HNEt3]2[H2NEt2]2{[VO(OMe)]2p-tert-butylcalix[8-SO2]areneH2} (4), [HNEt3]2[V(O)2p-tert-butylcalix[8]areneH5] (5) and [HNEt3]2[VIV2VV4O11(OMe)8] (6), respectively. Dc magnetic susceptibility measurements were performed on powdered microcrystalline samples of 1-3 in the T = 300-2 K temperature range.
View Article and Find Full Text PDF