Publications by authors named "Nigel P Shankley"

Background And Purpose: Small-molecule inhibitors of prolyl hydroxylase (PHD) enzymes are a novel target for the treatment of anaemia and functional iron deficiency (FID). Other than being orally bioavailable, the differentiation of PHD inhibitors from recombinant human erythropoietin (rhEPO) has not been demonstrated.

Experimental Approach: JNJ-42905343 was identified and characterized as a novel inhibitor of PHD and its action was compared with rhEPO in healthy rats and in a rat model of inflammation-induced anaemia and FID [peptidoglycan-polysaccharide (PGPS) model].

View Article and Find Full Text PDF

JNJ-26070109 [(R)4-bromo-N-[1-(2,4-difluoro-phenyl)-ethyl]-2-(quinoxaline-5-sulfonylamino)-benzamide] is a representative of a new chemical class of competitive antagonists of cholecystokinin 2 (CCK2) receptors. In this study, the primary in vitro pharmacology of JNJ-26070109 was evaluated along with the pharmacokinetic and pharmacodynamic properties of this compound in rat and canine models of gastric acid secretion. JNJ-26070109 expressed high affinity for human (pK(I) = 8.

View Article and Find Full Text PDF

The hypoxia-inducible factor (HIF) prolyl hydroxylase (PHD) enzymes represent novel targets for the treatment of anemia, ulcerative colitis, and ischemic and metabolic disease inter alia. We have identified a novel small-molecule inhibitor of PHD, 1-(5-chloro-6-(trifluoromethoxy)-1H-benzoimidazol-2-yl)-1H-pyrazole-4-carboxylic acid (JNJ-42041935), through structure-based drug design methods. The pharmacology of JNJ-42041935 was investigated in enzyme, cellular, and whole-animal systems and was compared with other compounds described in the literature as PHD inhibitors.

View Article and Find Full Text PDF

HIF prolyl 4-hydroxylases (PHD) are a family of enzymes that mediate key physiological responses to hypoxia by modulating the levels of hypoxia inducible factor 1-α (HIF1α). Certain benzimidazole-2-pyrazole carboxylates were discovered to be PHD2 inhibitors using ligand- and structure-based methods and found to be potent, orally efficacious stimulators of erythropoietin secretion in vivo.

View Article and Find Full Text PDF

The heme-regulated inhibitor (HRI) negatively regulates protein synthesis by phosphorylating eukaryotic initiation factor-2alpha (eIF2alpha) thereby inhibiting protein translation. The importance of HRI in regulating hemoglobin synthesis in erythroid cells makes it an attractive molecular target in need of further characterization. In this work, we have cloned and expressed the canine form of the HRI kinase.

View Article and Find Full Text PDF

A series of indeno[1,2-c]pyrazoles were discovered to be the first known inhibitors of heme-regulated eukaryotic initiation factor 2alpha (HRI) kinase. The synthesis, structure-activity relationship profile, and in-vitro pharmacological characterization of this inaugural series of HRI kinase inhibitors are detailed.

View Article and Find Full Text PDF

In the previous article we demonstrated how certain CCK2R-selective anthranilic amides could be structurally modified to afford high-affinity, selective CCK1R activity. We now describe our efforts at modulating and optimizing the CCK1R and CCK2R affinities aimed at producing compounds with good pharmacokinetics properties and in vivo efficacy in rat models of gastric acid and pancreatic amylase secretion.

View Article and Find Full Text PDF

A series of CCK2R-selective anthranilic amides is shown to derive CCK1R affinity via selective substitution of the amide side chain. Thus, extending the length of the original benzamide side chain by a single methylene unit imparts CCK1R affinity to the series, and further fine tuning of the affinity results in CCK1R selectivity of greater than 100-fold.

View Article and Find Full Text PDF

The prolyl-4-hydroxylase proteins regulate the hypoxia-inducible transcription factors (HIFs) by hydroxylation of proline residues targeting HIF-1alpha for proteasomal degradation. Using the purified catalytic domain of prolyl hydroxylase 2 (PHD2(181-417)), an enzymatic assay has been developed to test inhibitors of the enzyme in vitro. Because PHD2 hydroxylates HIF-1alpha, with succinic acid produced as an end product, radiolabeled [5-(14)C]-2-oxoglutaric acid was used and formation of [14C]-succinic acid was measured to quantify PHD2(181-417) enzymatic activity.

View Article and Find Full Text PDF

A novel series of cholecystokinin-2 receptor (CCK-2R) antagonists has been identified, as exemplified by anthranilic sulfonamide 1 (pK(i)=7.6). Pharmacokinetic and stability studies indicated that this series of compounds suffered from metabolic degradation, and that both the benzothiadiazole and piperidine rings were rapidly oxidized by liver enzymes.

View Article and Find Full Text PDF

A novel strategy for the synthesis of cholecystokinin-2 receptor ligands was developed. The route employs a solution-phase synthesis of a series of anthranilic sulfonamides followed by a resin capture purification strategy to produce multi-milligram quantities of compounds for bioassay. The synthesis was used to produce >100 compounds containing various functional groups, highlighting the general applicability of this strategy and to address specific metabolism issues in our CCK-2 program.

View Article and Find Full Text PDF

Transient receptor potential vanilloid 1 (TRPV1) plays an integral role in modulating the cough reflex, and it is an attractive antitussive drug target. The purpose of this study was to characterize a TRPV1 antagonist, 4-(3-trifluoromethyl-pyridin-2-yl)-piperazine-1-carboxylic acid (5-trifluoromethyl-pyridin-2-yl)-amide (JNJ17203212), against the guinea pig TRPV1 receptor in vitro followed by a proof-of-principle study in an acid-induced model of cough. The affinity of JNJ17203212 for the recombinant guinea pig TRPV1 receptor was estimated by radioligand binding, and it was functionally characterized by antagonism of low-pH and capsaicin-induced activation of the ion channel (fluorometric imaging plate reader and electrophysiology).

View Article and Find Full Text PDF

3-[5-(3,4-Dichloro-phenyl)-1-(4-methoxy-phenyl)-1H-pyrazol-3-yl]-2-m-tolyl-propionate (JNJ-17156516) is a novel, potent, and selective cholecystokinin (CCK)1-receptor antagonist. In this study, the pharmacology of JNJ-17156516 was investigated both in vitro and in vivo, and the pharmacokinetic profile was evaluated in rats. JNJ-17156516 expressed high-affinity at the cloned human (pK(I) = 7.

View Article and Find Full Text PDF

Obestatin was recently described as a bioactive peptide encoded for by the same gene as ghrelin but with opposite actions on food intake. Although some groups have confirmed these findings others find no effect. We investigated the effect of obestatin on feeding in rodents over a wide range of doses.

View Article and Find Full Text PDF

A high throughput screening approach to the identification of selective cholecystokinin-2 receptor (CCK-2R) ligands resulted in the discovery of a novel series of antagonists, represented by 1-[2-[(2,1,3-benzothiadiazol-4-ylsulfonyl)amino]-5-chlorobenzoyl]-piperidine (1; CCK-2R, pK(I) = 6.4). Preliminary exploration of the structure-activity relationships around the anthranilic ring and the amide and sulfonamide moieties led to a nearly 50-fold improvement of receptor affinity and showed a greater than 1000-fold selectivity over the related cholecystokinin-1 receptor.

View Article and Find Full Text PDF

The neuropeptide Neuromedin U (NMU) stimulates smooth muscle contraction, and modulates local blood flow and adrenocortical function via two endogenous receptors, NMU1 and NMU2. Although its amino-acid sequence is highly conserved across species, the physiological effects of NMU are variable between species and little is known of its effects on human tissues. We have examined the contractile effects of NMU-25 on human smooth muscles of the gastrointestinal (GI) tract (ascending colon, gallbladder) and long saphenous vein (LSV) using in vitro organ bath bioassays.

View Article and Find Full Text PDF

The peptide ligand neuromedin U (NMU) has been implicated in an array of biological activities, including contraction of uterine, intestinal and urinary bladder smooth muscle. However, many of these responses appear to be species-specific. This study was undertaken to fully elucidate the range of smooth muscle-stimulating effects of NMU in rats, mice and guinea-pigs, and to examine the extent of the species differences.

View Article and Find Full Text PDF

The systematic optimization of the structure of a novel 2,4,5-trisubstituted imidazole-based cholecystokinin-2 (CCK(2)) receptor antagonist afforded analogues with nanomolar receptor affinity. These compounds were now comparable in their potency to the bicyclic heteroaromatic-based compounds 5 (JB93182) and 6 (JB95008), from which the initial examples were designed using a field-point based molecular modeling approach. They were also orally active as judged by their inhibition of pentagastrin stimulated acid secretion in conscious dogs, in contrast to the bicyclic heteroaromatic-based compounds, which were ineffective because of biliary elimination.

View Article and Find Full Text PDF

A new molecular modeling approach has been used to derive a pharmacophore of the potent and selective cholecystokinin-2 (CCK(2)) receptor antagonist 5 (JB93182), based on features shared with two related series. The technique uses "field points" as simple and effective descriptions of the electrostatic and van der Waals maxima and minima surrounding a molecule equipped with XED (extended electron distribution) charges. Problems associated with the high levels of biliary elimination of 5 in vivo required us to design a compound with significantly lower molecular weight without sacrificing its nanomolar levels of in vitro activity.

View Article and Find Full Text PDF

Introduction: Cholecystokinin type-1 (CCK(1)) receptors mediate many of the physiological functions of CCK including delay of gastric emptying, pancreatic enzyme secretion, intestinal motility and gallbladder contractility. Existing in-vivo assays for the quantitative measurement of CCK(1) receptor mediated function are generally variable, limited in precision and require a relatively large number of animals to obtain statistically meaningful data. We found that they did not provide robust pharmacokinetic-pharmacodynamic data for profiling compounds acting at these receptors.

View Article and Find Full Text PDF

Designed zinc finger proteins (ZFPs) regulate expression of target genes when coupled to activator or repressor domains. Transfection of ZFPs into cell lines can create expression systems where the targeted endogenous gene is transcribed and the protein of interest can be investigated in its own cellular context. Here we describe the pharmacological investigation of an expression system generated using CCK2 receptor-selective ZFPs transfected into human embryonic kidney cells (HEKZFP system).

View Article and Find Full Text PDF

1 The full-length, canine cholecystokinin 1 (CCK1) receptor was cloned from gallbladder tissue using RT-PCR with a combination of primers designed to interact with conserved regions of the human and rat CCK1 receptor, which also shared homology with the canine genomic sequence. 2 Analysis of the sequence of the canine CCK1 receptor revealed a 1287 base pair product, which encoded a 429 amino-acid protein. This protein was 89% identical to the human and 85% identical to the rat CCK1 receptor.

View Article and Find Full Text PDF

1. Chronic inflammation is a central feature of asthma. The inflammatory cytokine tumour necrosis factor alpha (TNFalpha) has been implicated in this disease, and is known to alter airway smooth muscle functionally.

View Article and Find Full Text PDF

Drug discovery requires high-quality, high-throughput bioassays for lead identification and optimization. These assays are usually based on immortalized cell lines, which express the selected drug target either naturally or as a consequence of transfection with the cDNA encoding the target. Natural untransfected cell lines often fail to achieve the levels of expression required to provide assays of sufficient quality with a high enough signal-to-noise ratio.

View Article and Find Full Text PDF