Publications by authors named "Nigel Morrison"

In vitro osteoclast methods require constant treatment with macrophage colony stimulating factor (M-CSF) to support precursor survival and addition of the differentiation agent receptor activator of NF-κB ligand (RANKL). Constant exposure to granulocyte macrophage colony stimulating factor (GM-CSF) suppresses human osteoclast formation in vitro. Addition of the chemokine monocyte chemotactic protein-1 (MCP1) to such cultures dramatically increases osteoclast formation and overcomes GM-CSF mediated suppression.

View Article and Find Full Text PDF

Parathyroid hormone (PTH) and bisphosphonates (BPs), including alendronate (ALN), have opposing effects on bone dynamics. The extent to which PTH remains effective in the treatment of stress fracture (SFx) in the presence of an ongoing BP treatment has not been tested. SFx was induced in 150 female Wistar rats, divided into five equal groups ( = 30).

View Article and Find Full Text PDF

Purpose Of Review: The purpose of this review is to explore the role of monocyte chemoattractant protein-1 (MCP-1 or CCL2) in the processes that underpin bone remodelling, particularly the action of osteoblasts and osteoclasts, and its role in the development and metastasis of cancers that target the bone.

Recent Findings: MCP-1 is a key mediator of osteoclastogenesis, being the highest induced gene during intermittent treatment with parathyroid hormone (iPTH), but also regulates catabolic effects of continuous PTH on bone including monocyte and macrophage recruitment, osteoclast formation and bone resorption. In concert with PTH-related protein (PTHrP), MCP-1 mediates the interaction between tumour-derived factors and host-derived chemokines to promote skeletal metastasis.

View Article and Find Full Text PDF

Stress fractures (SFx) result from repetitive cyclical loading of bone. They are frequent athletic injuries and underlie atypical femoral fractures following long-term bisphosphonate (BP) therapy. We investigated the effect of a single PTH injection on the healing of SFx in the rat ulna.

View Article and Find Full Text PDF

Osteoclasts are multinucleated cells responsible for bone resorption. They are derived from the fusion of cells in the monocyte/macrophage lineage. Monocytes and macrophages can also fuse to form foreign body giant cells (FBGC).

View Article and Find Full Text PDF

Bone invasion is a common complication of oral squamous cell carcinoma (OSCC), and this study sought to explore whether suppressed expression of monocyte chemotactic protein-1 (MCP-1) can be used to inhibit the bone invasion by OSCC. Strong staining of MCP-1 protein was observed from 10 archival blocks of OSCC by immunohistochemistry (IHC). Real-time PCR showed MCP-1 mRNA was highly expressed by OSCC cell lines (SCC25, HN5, and Tca8113), and SCC25 cells had the highest expression.

View Article and Find Full Text PDF

The RUNX2 transcription factor is indispensable for skeletal development and controls bone formation by acting as a signaling hub and transcriptional regulator to coordinate target gene expression. A signaling partner of RUNX2 is the nuclear vitamin D receptor (VDR) that becomes active when bound by its ligand 1,25-dihydroxyvitamin D3 (VD3). RUNX2 and VDR unite to cooperatively regulate the expression of numerous genes.

View Article and Find Full Text PDF

Osteoclasts and foreign body giant cells (FBGCs) are both derived from the fusion of macropahges. These cells are seen in close proximity during foreign body reactions, therefore it was assumed that they might interact with each other. The aim was to identify important genes that are expressed by osteoclasts and FBGCs which can be used to understand peri-implantitis and predict the relationship of these cells during foreign body reactions.

View Article and Find Full Text PDF

Runt related transcription factor 2 (RUNX2) is a key regulator of osteoblast differentiation. Several variations within the RUNX2 gene have been found to be associated with significant changes in BMD, which is a major risk factor for fracture. In this study we report that an 18 bp deletion within the polyalanine tract (17A>11A) of RUNX2 is significantly associated with fracture.

View Article and Find Full Text PDF

Human osteoclasts were differentiated using receptor activator of NFκB ligand (RANKL) and macrophage colony stimulating factor (M-CSF) from colony forming unit-granulocyte macrophage (CFU-GM) precursors of the myeloid lineage grown from umbilical cord blood. Gene expression profiling using quantitative polymerase chain reaction (Q-PCR) showed more than 1,000-fold induction of chemokine MCP-1 within 24 h of RANKL treatment. MCP-1 mRNA content exceeds that of other assayed chemokines (CCL1, 3, 4, and 5) at all time points up to day 14 of treatment.

View Article and Find Full Text PDF

Burkholderia pseudomallei is a Gram-negative environmental bacterium and the causative agent of melioidosis, a potentially fatal, acute or chronic disease endemic in the tropics. Acyl homoserine lactone (AHL)-mediated quorum sensing and signalling have been associated with virulence and biofilm formation in numerous bacterial pathogens. In the canonical acyl-homoserine lactone signalling paradigm, AHLs are detected by a response regulator.

View Article and Find Full Text PDF

Parathyroid hormone (PTH) has a significant role as an anabolic hormone in bone when administered by intermittent injection. Previous microarray studies in our laboratory have shown that the most highly regulated gene, monocyte chemoattractant protein-1 (MCP-1), is rapidly and transiently induced when hPTH(1-34) is injected intermittently in rats. Through further in vivo studies, we found that rats treated with hPTH(1-34) showed a significant increase in serum MCP-1 levels 2 hours after PTH injection compared with basal levels.

View Article and Find Full Text PDF

Macrophages have the ability to fuse and form multinucleated giant cells such as Osteoclast (OCs) and FBGCs. Osteoclast stimulatory transmembrane protein (OC-STAMP) is an important cell surface protein involved in the formation of OCs. This study sought to determine if OC-STAMP also regulates formation of FBGCs using expression analysis and subsequent inhibition studies.

View Article and Find Full Text PDF

RUNX2 is an essential transcription factor required for skeletal development and cartilage formation. Haploinsufficiency of RUNX2 leads to cleidocranial displaysia (CCD) a skeletal disorder characterised by gross dysgenesis of bones particularly those derived from intramembranous bone formation. A notable feature of the RUNX2 protein is the polyglutamine and polyalanine (23Q/17A) domain coded by a repeat sequence.

View Article and Find Full Text PDF

Burkholderia pseudomallei is the causative agent of melioidosis, a disease endemic in areas of South-East Asia and northern Australia, and is classed as a category B select agent by the Centers for Disease Control and Prevention (CDC). Factors that determine whether host infection is achieved or if disease is chronic or acute are unknown but the type of host immune response that is mounted is important. B.

View Article and Find Full Text PDF

Background: Real-time quantitative RT-PCR (qPCR) is a powerful technique capable of accurately quantitating mRNA expression levels over a large dynamic range. This makes qPCR the most widely used method for studying quantitative gene expression. An important aspect of qPCR is selecting appropriate controls or normalization factors to account for any differences in starting cDNA quantities between samples during expression studies.

View Article and Find Full Text PDF

Rapid mineralization of cultured osteoblasts could be a useful characteristic in stem cell-mediated therapies for fracture and other orthopedic problems. Dimethyl sulfoxide (DMSO) is a small amphipathic solvent molecule capable of stimulating cell differentiation. We report that, in primary human osteoblasts, DMSO dose-dependently enhanced the expression of osteoblast differentiation markers alkaline phosphatase activity and extracellular matrix mineralization.

View Article and Find Full Text PDF

Burkholderia pseudomallei is a facultative intracellular pathogen and the causative agent of melioidosis, a spectrum of potentially fatal diseases endemic in Northern Australia and South-East Asia. We demonstrate that B. pseudomallei rapidly modifies infected macrophage-like cells in a manner analagous to osteoclastogenesis.

View Article and Find Full Text PDF

Unlabelled: RhoGTPases regulate actin cytoskeleton dynamics, a key element in osteoclast biology. We identified three novel genes induced during RANKL-stimulated osteoclastogenesis among RhoGTPases and their exchange factors that are essential in osteoclast biology.

Introduction: During the process of differentiation, adhesion to the bone matrix or osteolysis, the actin cytoskeleton of osteoclasts undergoes profound reorganization.

View Article and Find Full Text PDF

Background: Recent studies have suggested that the Arg allele of beta3-adrenergic receptor (ADRB3) gene is associated with body mass index (BMI), which is an important predictor of bone mineral density (BMD) and fracture risk. However, whether the ADRB3 gene polymorphism is associated with fracture risk has not been investigated. The aim of study was to examine the inter-relationships between ADRB3 gene polymorphisms, BMI, BMD and fracture risk in elderly Caucasians.

View Article and Find Full Text PDF

Unlabelled: RUNX2 gene SNPs were genotyped in subjects from the upper and lower deciles of age- and weight-adjusted femoral neck BMD. Of 16 SNPs in RUNX2 and its two promoters (P1 and P2), only SNPs in the P2 promoter were significantly associated with BMD. These P2 promoter SNPs were functionally different in gel-shift and promoter activity assays.

View Article and Find Full Text PDF

MCP-1 (monocyte chemotactic protein-1) is a CC chemokine that is induced by receptor activator of NFkappaB ligand (RANKL) in human osteoclasts. In the absence of RANKL, treatment of human peripheral blood mononuclear cells with macrophage colony-stimulating factor and MCP-1 resulted in tartrate-resistant acid phosphatase (TRAP)-positive multinuclear cells that are positive for calcitonin receptor (CTR) and a number of other osteoclast markers, including nuclear factor of activated t cells, cytoplasmic, calcineurin-dependent 1 (NFATc1). Although NFATc1 was strongly induced by MCP-1 and was observed in the nucleus, MCP-1 did not permit the formation of bone-resorbing osteoclasts, although these cells had the typical TRAP(+)/CTR(+) multinuclear phenotype of osteoclasts.

View Article and Find Full Text PDF

Chemokines MCP-1 and RANTES are induced when authentic bone resorbing human osteoclasts differentiate from monocyte precursors in vitro. In addition, MCP-1 and RANTES can stimulate the differentiation of cells with the visual appearance of osteoclasts, being multinuclear and positive for tartrate resistance acid phosphatase (TRAP +). We show here that MIP1alpha is also potently induced by RANKL during human osteoclast differentiation and that this chemokine also induces the formation of TRAP + multinucleated cells in the absence of RANKL.

View Article and Find Full Text PDF

Osteoclasts are large multinucleated cells responsible for bone resorption. Bone resorption is dependent on the liberation of calcium by acid and protease destruction of the bone matrix by proteinases. The key proteinase produced by the osteoclast is cathepsin K.

View Article and Find Full Text PDF

Osteoporosis is a complex multi-factorial disease where environment, diet and genetics play a role in determining susceptibility. Patients with existing vertebral fracture have a heightened risk of further recurrent vertebral fracture. The efficacy of new osteoporosis therapies is often compared to calcium supplementation.

View Article and Find Full Text PDF