Heterogeneity in cell membrane structure, typified by microdomains with different biophysical and biochemical properties, is thought to impact on a variety of cell functions. Integral membrane proteins act as nanometre-sized probes of the lipid environment and their thermally-driven movements can be used to report local variations in membrane properties. In the current study, we have used total internal reflection fluorescence microscopy (TIRFM) combined with super-resolution tracking of multiple individual molecules, in order to create high-resolution maps of local membrane viscosity.
View Article and Find Full Text PDFRecent advances in light microscopy allow individual biological macromolecules to be visualized in the plasma membrane and cytosol of live cells with nanometer precision and ∼10-ms time resolution. This allows new discoveries to be made because the location and kinetics of molecular interactions can be directly observed in situ without the inherent averaging of bulk measurements. To date, the majority of single-molecule imaging studies have been performed in either unicellular organisms or cultured, and often chemically fixed, mammalian cell lines.
View Article and Find Full Text PDFG protein-coupled receptors (GPCRs), including dopamine receptors, represent a group of important pharmacological targets. An increased formation of dopamine receptor D2 homodimers has been suggested to be associated with the pathophysiology of schizophrenia. Selective labeling and ligand-induced modulation of dimerization may therefore allow the investigation of the pathophysiological role of these dimers.
View Article and Find Full Text PDFM2 muscarinic acetylcholine receptors modulate cardiac rhythm via regulation of the inward potassium current. To increase our understanding of M2 receptor physiology we used Total Internal Reflection Fluorescence Microscopy to visualize individual receptors at the plasma membrane of transformed CHO(M2) cells, a cardiac cell line (HL-1), primary cardiomyocytes and tissue slices from pre- and post-natal mice. Receptor expression levels between individual cells in dissociated cardiomyocytes and heart slices were highly variable and only 10% of murine cardiomyocytes expressed muscarinic receptors.
View Article and Find Full Text PDFActivation of FFA1 (GPR40), a member of G protein-coupling receptor family A, is mediated by medium- and long-chain fatty acids and leads to amplification of glucose-stimulated insulin secretion, suggesting a potential role for free fatty acid 1 (FFA1) as a target for type 2 diabetes. It was assumed previously that there is a single binding site for fatty acids and synthetic FFA1 agonists. However, using members of two chemical series of partial and full agonists that have been identified, radioligand binding interaction studies revealed that the full agonists do not bind to the same site as the partial agonists but exhibit positive heterotropic cooperativity.
View Article and Find Full Text PDFThere is a large body of experimental evidence that is compatible with the presence of heterodimers of the major A subclass of G protein-coupled receptors (GPCRs) and suggests that these heterodimers might have different functional properties from those of the monomers (or homodimers) of the individual receptors that engage in heterodimer formation. The question is whether there are allosteric interactions across the receptor-receptor interface of a heterodimer that modulate the binding properties of the heterodimer components and thereby change their pharmacology. In this review, I examine published experimental evidence from radioligand binding studies in the context of different models of allosterism and discuss a number of apparently discrepant results.
View Article and Find Full Text PDFBackground And Purpose: Reboxetine is a clinically used antidepressant and is a racemic mixture of two enantiomers, SS- and RR-reboxetine. The aim of the work described in this manuscript was to determine the kinetics of binding of the RR- and SS-reboxetine to the human noradrenaline transporter (hNET).
Experimental Approach: We have applied a simultaneous mixed-effects method to the analysis of the transient kinetics of binding of SS-, RR- and racemic reboxetine to hNET.
G-protein-coupled receptors (GPCRs) are the largest family of transmembrane signaling proteins in the human genome. Events in the GPCR signaling cascade have been well characterized, but the receptor composition and its membrane distribution are still generally unknown. Although there is evidence that some members of the GPCR superfamily exist as constitutive dimers or higher oligomers, interpretation of the results has been disputed, and recent studies indicate that monomeric GPCRs may also be functional.
View Article and Find Full Text PDFMuscarinic MT7 toxin is a highly selective and potent antagonist of the M(1) subtype of muscarinic receptor and acts by binding to an allosteric site. To identify the molecular determinants by which MT7 toxin interacts with this receptor in its free and NMS-occupied states, the effect on toxin potency of alanine substitution was evaluated in equilibrium and kinetic binding experiments as well as in functional assays. The determination of the crystallographic structure of an MT7-derivative (MT7-diiodoTyr51) allowed the selection of candidate residues that are accessible and present on both faces of the three toxin loops.
View Article and Find Full Text PDFStrychnine and brucine from the plant Strychnos nux vomica have been shown to have interesting pharmacological effects on several neurotransmitter receptors, including some members of the superfamily of ligand-gated ion channels. In this study, we have characterised the pharmacological properties of tertiary and quaternary analogues as well as bisquaternary dimers of strychnine and brucine at human alpha1 and alpha1beta glycine receptors and at a chimera consisting of the amino-terminal domain of the alpha7 nicotinic receptor (containing the orthosteric ligand binding site) and the ion channel domain of the 5-HT3A serotonin receptor. Although the majority of the analogues displayed significantly increased Ki values at the glycine receptors compared to strychnine and brucine, a few retained the high antagonist potencies of the parent compounds.
View Article and Find Full Text PDFThe binding and function of muscarinic acetylcholine receptors can be modulated allosterically. Some allosteric muscarinic ligands are "atypical", having steep concentration-effect curves and not interacting competitively with "typical" allosteric modulators. For atypical agents, a second allosteric site has been proposed.
View Article and Find Full Text PDFLoss of forebrain acetylcholine is an early neurochemical lesion in Alzheimer's disease (AD). As muscarinic acetylcholine receptors are involved in memory and cognition, a muscarinic agonist could therefore provide a "replacement therapy" in this disease. However, muscarinic receptors occur throughout the CNS and the periphery.
View Article and Find Full Text PDFAn optimized assay for the binding of [3H]dimethyl-W84 to its allosteric site on M2 muscarinic receptors has been used to directly measure the affinities of allosteric ligands. Their potencies agree with those deduced indirectly by their modulation of the equilibrium binding and kinetics of [3H]N-methylscopolamine ([3H]NMS) binding to the orthosteric site. The affinities and cooperativities of orthosteric antagonists with [3H]dimethyl-W84 have also been quantitated.
View Article and Find Full Text PDFLoss of forebrain acetylcholine (ACh) is an early neurochemical lesion in Alzheimer's Disease (AD), and muscarinic receptors for ACh are involved in memory and cognition, so a muscarinic agonist could provide 'replacement therapy' in this disease. Muscarinic receptors, which couple to G-proteins, occur throughout the CNS, and in the periphery they mediate the responses of the parasympathetic nervous system, so selectivity is crucial. The five subtypes of muscarinic receptor, M1-M5, have a distinct regional distribution, with M2 and M3 mediating most of the peripheral effects, M2 predominating in hindbrain areas, and M1 predominating in the cortex and hippocampus--the brain regions most associated with memory and cognition, which has lead to a search for a truly M1-selective muscarinic agonist.
View Article and Find Full Text PDFTwo series of pentacyclic carbazolones, 22 and 23, have been synthesized utilizing a facile intramolecular Dielsminus signAlder reaction and are allosteric modulators at muscarinic acetylcholine receptors. Their affinities and cooperativities with acetylcholine and the antagonist N-methylscopolamine (NMS) at M(1)minus signM(4) receptors have been analyzed and compared. All of the synthesized compounds are negatively cooperative with acetylcholine.
View Article and Find Full Text PDF