Background: The incidence of pulmonary arterial hypertension secondary to the use of indirect serotinergic agonists such as aminorex and dexfenfluramine led to the "serotonin hypothesis" of pulmonary arterial hypertension; however, the role of serotonin in dexfenfluramine-induced pulmonary arterial hypertension remains controversial. Here, we used novel transgenic mice lacking peripheral serotonin (deficient in tryptophan hydroxylase-1; Tph1(-/-) mice) or overexpressing the gene for the human serotonin transporter (SERT; SERT(+) mice) to investigate this further.
Methods And Results: Dexfenfluramine administration (5 mg x kg(-1) x d(-1) PO for 28 days) increased systolic right ventricular pressure and pulmonary vascular remodeling in wild-type mice but not in Tph1(-/-) mice, which suggests that dexfenfluramine-induced pulmonary arterial hypertension is dependent on serotonin synthesis.
In vivo haemodynamic responses to human urotensin-II were determined in two models of pulmonary hypertension: rabbits with left ventricular dysfunction following coronary artery ligation and the hypoxic rat. Effects were also examined in the presence of the nitric oxide synthase inhibitor N(omega)-nitro-L-arginine methyl ester (L-NAME). Human urotensin-II increased pulmonary arterial pressure to a greater extent in ligated rabbits than their controls and L-NAME increased pulmonary pressure without significantly affecting these responses to human urotensin-II.
View Article and Find Full Text PDF