Publications by authors named "Nigel E Raine"

Bees are crucial for food security and biodiversity. However, managed bees are increasingly considered drivers of wild bee declines, leading to stakeholder conflicts and restrictive policies. We propose avenues to reconcile wild and managed bee proponents and point out knowledge gaps that hinder the development of evidence-based policies.

View Article and Find Full Text PDF

New evidence points to substantial impacts of exposure to pesticide residues in soil for a range of bee taxa that have close regular contact with this substrate. Among others, the risk of exposure is high for bumblebee (Bombus spp.) queens hibernating in agricultural soils.

View Article and Find Full Text PDF

Bumblebees and other key pollinators are experiencing global declines, a phenomenon driven by multiple environmental stressors, including pesticide exposure. While bumblebee queens spend most of their life hibernating underground, no study to date has examined how exposure to pesticide-contaminated soils might affect bumblebee queens during this solitary phase of their lifecycle. We exposed Bombus impatiens queens (n = 303) to soil treated with field-realistic concentrations of two diamide insecticides (chlorantraniliprole and cyantraniliprole) and two fungicides (boscalid and difenoconazole), alone or combined, during a 30-week hibernation period.

View Article and Find Full Text PDF

Agricultural intensification has been identified as one of the key causes of global insect biodiversity losses. These losses have been further linked to the widespread use of agrochemicals associated with modern agricultural practices. Many of these chemicals are known to have negative sublethal effects on commercial pollinators, such as managed honeybees and bumblebees, but less is known about the impacts on wild bees.

View Article and Find Full Text PDF

In a previous study, an experimental oversight led to the accumulation of water filling a container housing diapausing bumblebee queens. Surprisingly, after draining the water, queens were found to be alive. This observation raises a compelling question: can bumblebee queens endure periods of inundation while overwintering underground? To address this question, we conducted an experiment using 143 common eastern bumblebee () queens placed in soil-filled tubes and subjected to artificially induced diapause in a refrigerated unit for 7 days.

View Article and Find Full Text PDF

Mounting evidence supporting the negative impacts of exposure to neonicotinoids on bees has prompted the registration of novel 'bee-friendly' insecticides for agricultural use. Flupyradifurone (FPF) is a butenolide insecticide that shares the same mode of action as neonicotinoids and has been assessed to be 'practically non-toxic to adult honeybees' using current risk assessment procedures. However, these assessments overlook some routes of exposure specific to wild bees, such as contact with residues in soil for ground-nesters.

View Article and Find Full Text PDF

Bees are essential pollinators of many crops and wild plants, and pesticide exposure is one of the key environmental stressors affecting their health in anthropogenically modified landscapes. Until recently, almost all information on routes and impacts of pesticide exposure came from honey bees, at least partially because they were the only model species required for environmental risk assessments (ERAs) for insect pollinators. Recently, there has been a surge in research activity focusing on pesticide exposure and effects for non- bees, including other social bees (bumble bees and stingless bees) and solitary bees.

View Article and Find Full Text PDF

Habitat loss and fragmentation are major drivers of global pollinator declines, yet even after recent unprecedented periods of anthropogenic land-use intensification the amount of habitat needed to support insect pollinators remains unknown. Here we use comprehensive pan trap bee survey datasets from Ontario, Canada, to determine which habitat types are needed and at what spatial scales to support wild bee communities. Safeguarding wild bee communities in a Canadian landscape requires 11.

View Article and Find Full Text PDF

The phenology of crop flowering and pollinator reproduction can become asynchronous at the edge of their respective ranges. At a northern site in Peterborough County, Ontario, we evaluated offspring emergence of pollen specialist hoary squash bees () from nests in enclosures to determine their phenological synchrony with a squash crop (). For the crop, we evaluated the percentage of bees that emerged in time to provide pollination services during the crop pollination window.

View Article and Find Full Text PDF

Exposure to pesticides is a major threat to bumblebee (Bombus spp.) health. In temperate regions, queens of many bumblebee species hibernate underground for several months, putting them at potentially high risk of exposure to soil contaminants.

View Article and Find Full Text PDF

Fungicides account for more than 35% of the global pesticide market and their use is predicted to increase in the future. While fungicides are commonly applied during bloom when bees are likely foraging on crops, whether real-world exposure to these chemicals - alone or in combination with other stressors - constitutes a threat to the health of bees is still the subject of great uncertainty. The first step in estimating the risks of exposure to fungicides for bees is to understand how and to what extent bees are exposed to these active ingredients.

View Article and Find Full Text PDF

The Common Eastern Bumblebee (Bombus impatiens) is native to North America with an expanding range across Eastern Canada and the USA. This species is commercially produced primarily for greenhouse crop pollination and is a common and abundant component of the wild bumblebee fauna in agricultural, suburban and urban landscapes. However, there is a dearth of pesticide toxicity information about North American bumblebees.

View Article and Find Full Text PDF

Seventy five percent of the world's food crops benefit from insect pollination. Hence, there has been increased interest in how global change drivers impact this critical ecosystem service. Because standardized data on crop pollination are rarely available, we are limited in our capacity to understand the variation in pollination benefits to crop yield, as well as to anticipate changes in this service, develop predictions, and inform management actions.

View Article and Find Full Text PDF

Eastern North American migratory monarch butterflies () have faced sharp declines over the past two decades. Captive rearing of monarch butterflies is a popular and widely used approach for both public education and conservation. However, recent evidence suggests that captive-reared monarchs may lose their capacity to orient southward during fall migration to their Mexican overwintering sites, raising questions about the value and ethics of this activity undertaken by tens of thousands of North American citizens, educators, volunteers and conservationists each year.

View Article and Find Full Text PDF

The increasing demand for insect-pollinated crops highlights the need for crop pollination paradigms that include all available pollinators. In North America, Cucurbita crops (pumpkin, squash) depend on both wild (solitary and Bombus spp.: Hymenoptera: Apidae) and managed honey bees (Apis mellifera L.

View Article and Find Full Text PDF

Insect pollinators are threatened by multiple environmental stressors, including pesticide exposure. Despite being important pollinators, solitary ground-nesting bees are inadequately represented by pesticide risk assessments reliant almost exclusively on honeybee ecotoxicology. Here we evaluate the effects of realistic exposure via squash crops treated with systemic insecticides (Admire-imidacloprid soil application, FarMore FI400-thiamethoxam seed-coating, or Coragen-chlorantraniliprole foliar spray) for a ground-nesting bee species (Hoary squash bee, Eucera pruinosa) in a 3-year semi-field experiment.

View Article and Find Full Text PDF

Migratory insects use a variety of innate mechanisms to determine their orientation and maintain correct bearing. For long-distance migrants, such as the monarch butterfly (), these journeys could be affected by exposure to environmental contaminants. Neonicotinoids are synthetic insecticides that work by affecting the nervous system of insects, resulting in impairment of their mobility, cognitive performance, and other physiological and behavioural functions.

View Article and Find Full Text PDF

Using the hoary squash bee (Peponapis pruinosa) as a model, we provide the first probabilistic risk assessment of exposure to systemic insecticides in soil for ground-nesting bees. To assess risk in acute and chronic exposure scenarios in Cucurbita and field crops, concentrations of clothianidin, thiamethoxam and imidacloprid (neonicotinoids) and chlorantraniliprole (anthranilic diamide) in cropped soil were plotted to produce an environmental exposure distribution for each insecticide. The probability of exceedance of several exposure endpoints (LCs) was compared to an acceptable risk threshold (5%).

View Article and Find Full Text PDF

Background: Individual bees exhibit complex movement patterns to efficiently exploit small areas within larger plant populations. How such individual spatial behaviours scale up to the collective level, when several foragers visit a common area, has remained challenging to investigate, both because of the low resolution of field movement data and the limited power of the statistical descriptors to analyse them. To tackle these issues we video recorded all flower visits ( = 6205), and every interaction on flowers ( = 628), involving foragers from a bumblebee () colony in a large outdoor flight cage (880 m), containing ten artificial flowers, collected on five consecutive days, and analysed bee movements using networks statistics.

View Article and Find Full Text PDF

Current pesticide risk assessment practices use the honey bee, Apis mellifera L., as a surrogate to characterize the likelihood of chemical exposure of a candidate pesticide for all bee species. Bees make up a diverse insect group that provides critical pollination services to both managed and wild ecosystems.

View Article and Find Full Text PDF

Current pesticide risk assessment for bees relies on a single (social) species, the western honey bee, Apis mellifera L. (Hymenoptera: Apidae). However, most of the >20,000 bee species worldwide are solitary.

View Article and Find Full Text PDF

To date, regulatory pesticide risk assessments have relied on the honey bee (Apis mellifera L.) (Hymenoptera: Apidae) as a surrogate test species for estimating the risk of pesticide exposure to all bee species. However, honey bees and non-Apis bees may differ in their susceptibility and exposure to pesticides.

View Article and Find Full Text PDF